/ News
Federal agencies kick off $132 million effort to create 'human on a chip'
Many medications and treatments, even after years of research, fail in the final phase of review — when they're actually tested in humans. Despite having performed well in the lab, in mice, and perhaps in closer human analogues like monkeys, drugs occasionally turn out to be ineffective or toxic when used by the humans they're meant to help. To improve this process, and limit the risks to human testers, the National Institutes of Health and the Defense Advanced Research Projects Agency are together pledging up to up to $132 million for creating "organ-on-a-chip" systems, with the eventual goal of simulating the entire human body.
The tissue-chip project is a natural outgrowth (so to speak) of existing lab testing on human tissue. Each of the projects being funded is aimed at isolating a small, living piece of a human being. It may be just a few cells, but those cells would grow and function as if they were in their native habitat, the human body. And surrounding those cells would be sensors for detecting microscopic changes in the test environment.
Each type of cell and organ must be approached differently: Brain cells exist in an environment vastly different from muscles or the liver. Consequently, the funding is spread over a number of institutions and programs, some of which are specializing in just one type of tissue or organ.
Vanderbilt University, for instance, will be receiving up to $2.1 million from the NIH's $70 million allocation, for the creation of what they call a "microbrain reactor." It would put human brain cells into an artificial environment that not only keeps them alive, but simulates the physiological barriers that protect the brain from contaminants in blood and other fluids. John Wikswo, who is leading Vanderbilt's effort, is enthusiastic about the research:
"Given the differences in cellular biology in the brains of rodents and humans, development of a brain model that contains neurons and all three barriers between blood, brain and cerebral spinal fluid, using entirely human cells, will represent a fundamental advance in and of itself."
Much more information on the project and its multidisciplinary lineup of researchers can be found in Vanderbilt's news release.
Other institutions are undertaking much larger efforts. Harvard University has received a similar amount from the NIH, but Harvard's Wyss Institute could also get more than 10 times as much — up to $37 million — from DARPA to develop a device that integrates as many as 10 organs on a chip. It would be a closer and more complete representation of the human body than has ever been created — a veritable homunculus that could open the way to cheaper, quicker and safer drug testing. It would also reduce the number and variety of animals used in testing, and enable widespread, standardized techniques requiring less training.
This video of experts explaining the Wyss Institute's lung on a chip gives a more specific idea of the context and purpose of this technology:
Researchers at Harvard's Wyss Institute explain how "organs on a chip" can improve drug testing.
Another double-barreled dose of funding is heading toward the Massachusetts Institute of Technology: MIT and the Draper Laboratory, in collaboration with researchers from the University of Pittsburgh, are set to receive up to $6.25 million from NIH to model cancer thereapies using engineered human tissue constructs. Up to $26.3 million more will be provided under an agreement with DARPA to create an "organ-on-a-chip" platform, through a new program called BIO-MIMETICS. (That's not only a word in itself, but also a mouthful of an acronym standing for "Barrier-Immune-Organ: Microphysiology, Microenvironment Engineered Construct Systems.")
If everything goes as planned, the MIT-led work with human tissue would be adapted for the BIO-MIMETICS platform. MIT's news release provides more details.
The NIH, DARPA, and the Food and Drug Administration are working in concert, but their funding is separate. (The description of DARPA's proposal is here). In addition to the grants given to Vanderbilt, Harvard and MIT, the NIH has awarded funding to 14 other projects, adding up to a potential total of $70 million over five years.
The FDA isn't kicking in any money for the researchers right now, but the fact sheet for the initiative says the FDA "will help explore how this new technology might be used to assess drug safety prior to approval for first-in-human studies."
You'll find more details about all 17 projects via the NIH's webpage on the Tissue Chip Project Awards. Here's a brief rundown on the projects and their principal researchers.
Ten awards are aimed at investigating or creating systems by which organs are simulated on an extremely small scale. The terminology differs but they are largely working in the same sphere. We've already touched on the funding going to Vanderbilt, Harvard and MIT. Here are the other seven projects:
- Microphysiological systems and low-cost microfluidic platform with analytics (Cornell University - Michael Shuler and James Hickman)
- Circulatory system and integrated muscle tissue for drug and tissue toxicity (Duke University - George Truskey)
- Human induced pluripotent stem cell and embryonic stem cell-based models for predictive neural toxicity and teratogenicity (University of Wisconsin, Madison - James Thomson)
- Disease-specific integrated microphysiological human tissue models (UC Berkeley - Kevin Healy and Luke Lee)
- An integrated in vitro model of perfused tumor and cardiac tissue (UC Irvine - Steven George)
- A 3-D biomimetic liver sinusoid construct for predicting physiology and toxicity (University of Pittsburgh - D. Lansing Taylor and Martin Yarmush)
- A tissue-engineered human kidney microphysiological system (University of Washington - Jonathan Himmelfarb)
Seven awards are for exploring stem/progenitor cells as sources for the tissues to be used in such microsystems:
- Generating human intestinal organoids with an enteric nervous system (Cincinnati Children's Hospital Medical Center - James Wells)
- Modeling complex disease using induced pluripotent stem cell-derived skin constructs (Columbia University Health Sciences - Angela Christiano)
- Human intestinal organoids: Pre-clinical models of non-inflammatory diarrhea (Johns Hopkins University - Mark Donowitz)
- A 3-D model of human brain development for studying gene/environment interactions (Johns Hopkins University - Thomas Hartung)
- Modeling oxidative stress and DNA damage using a gastrointestinal organotypic culture system (University of Pennsylvania, Philadelphia - John Lynch)
- Three-dimensional osteochondral micro-tissue to model pathogenesis of osteoarthritis (University of Pittsburgh - Rocky Tuan)
- Three-dimensional human lung model to study lung disease and formation of fibrosis (University of Texas - Joan Nichols)
Source: http://cosmiclog.nbcnews.com/_news/2012/07/24/12930646-federal-agencies-kick-off-132-million-effort-to-create-human-on-a-chip?lite
/ About us
Founded by Russian entrepreneur Dmitry Itskov in February 2011 with the participation of leading Russian specialists in the field of neural interfaces, robotics, artificial organs and systems.
The main goals of the 2045 Initiative: the creation and realization of a new strategy for the development of humanity which meets global civilization challenges; the creation of optimale conditions promoting the spiritual enlightenment of humanity; and the realization of a new futuristic reality based on 5 principles: high spirituality, high culture, high ethics, high science and high technologies.
The main science mega-project of the 2045 Initiative aims to create technologies enabling the transfer of a individual’s personality to a more advanced non-biological carrier, and extending life, including to the point of immortality. We devote particular attention to enabling the fullest possible dialogue between the world’s major spiritual traditions, science and society.
A large-scale transformation of humanity, comparable to some of the major spiritual and sci-tech revolutions in history, will require a new strategy. We believe this to be necessary to overcome existing crises, which threaten our planetary habitat and the continued existence of humanity as a species. With the 2045 Initiative, we hope to realize a new strategy for humanity's development, and in so doing, create a more productive, fulfilling, and satisfying future.
The "2045" team is working towards creating an international research center where leading scientists will be engaged in research and development in the fields of anthropomorphic robotics, living systems modeling and brain and consciousness modeling with the goal of transferring one’s individual consciousness to an artificial carrier and achieving cybernetic immortality.
An annual congress "The Global Future 2045" is organized by the Initiative to give platform for discussing mankind's evolutionary strategy based on technologies of cybernetic immortality as well as the possible impact of such technologies on global society, politics and economies of the future.
Future prospects of "2045" Initiative for society
2015-2020
The emergence and widespread use of affordable android "avatars" controlled by a "brain-computer" interface. Coupled with related technologies “avatars’ will give people a number of new features: ability to work in dangerous environments, perform rescue operations, travel in extreme situations etc.
Avatar components will be used in medicine for the rehabilitation of fully or partially disabled patients giving them prosthetic limbs or recover lost senses.
2020-2025
Creation of an autonomous life-support system for the human brain linked to a robot, ‘avatar’, will save people whose body is completely worn out or irreversibly damaged. Any patient with an intact brain will be able to return to a fully functioning bodily life. Such technologies will greatly enlarge the possibility of hybrid bio-electronic devices, thus creating a new IT revolution and will make all kinds of superimpositions of electronic and biological systems possible.
2030-2035
Creation of a computer model of the brain and human consciousness with the subsequent development of means to transfer individual consciousness onto an artificial carrier. This development will profoundly change the world, it will not only give everyone the possibility of cybernetic immortality but will also create a friendly artificial intelligence, expand human capabilities and provide opportunities for ordinary people to restore or modify their own brain multiple times. The final result at this stage can be a real revolution in the understanding of human nature that will completely change the human and technical prospects for humanity.
2045
This is the time when substance-independent minds will receive new bodies with capacities far exceeding those of ordinary humans. A new era for humanity will arrive! Changes will occur in all spheres of human activity – energy generation, transportation, politics, medicine, psychology, sciences, and so on.
Today it is hard to imagine a future when bodies consisting of nanorobots will become affordable and capable of taking any form. It is also hard to imagine body holograms featuring controlled matter. One thing is clear however: humanity, for the first time in its history, will make a fully managed evolutionary transition and eventually become a new species. Moreover, prerequisites for a large-scale expansion into outer space will be created as well.
Key elements of the project in the future
• International social movement
• social network immortal.me
• charitable foundation "Global Future 2045" (Foundation 2045)
• scientific research centre "Immortality"
• business incubator
• University of "Immortality"
• annual award for contribution to the realization of the project of "Immortality”.