/ News

16.08.2012

Study of fruit fly chromosomes improves understanding of evolution, fertility

The propagation of every animal on the planet is the result of sexual activity between males and females of a given species. But how did things get this way? Why two sexes instead of one? Why are sperm necessary for reproduction and how did they evolve? 

These as-yet-unresolved issues fascinate Timothy Karr, a developmental geneticist and evolutionary biologist at Arizona State University’s Biodesign Institute. To probe them, he uses a common fruit fly, Drosophila melanogaster an organism that has provided science with an enormous treasure-trove of genetic information.  “My research focuses on the evolution of sex and in gamete function,” Karr says. “I focus primarily on the sperm side of the sexual equation. I’m interested in how they originated and how they are maintained in populations.” Karr’s current study, in collaboration with researchers at the University of Chicago, recently appeared in the journal BMC Biology. 

The study reexamines an earlier paper that analyzed the sex chromosomes of fruit flies during spermatogenesis – the process that produces mature sperm from germ cells.  While the previous paper, by Lyudmila M Mikhaylova and Dmitry I Nurminsky, argued against the silencing of sex-linked genes on the X chromosome in Drosophila during meiosis a process referred to as Meiotic Sex Chromosome Inactivation (MSCI) – the reanalysis presented by Karr suggests MSCI is indeed occurring.  The work sheds new light on the evolution of sperm structure and function, through an analysis of Drosophila genes and gene products. As Karr explains, the research has important implications for humans as well: “The more direct, biomedical aspect is that when we learn about the function of a gene that encodes a protein in Drosophila sperm, we can immediately see if there’s a relationship between these genes and their functions and known problems with fertility in humans.” 

Super Fly Perhaps no other model organism has yielded more insights into human genetics than the tiny fruit fly Drosophila melanogaster.  In 1906, Thomas Hunt Morgan of Columbia University began work on D. melanogaster, (one of over 1500 species contained in the Drosophila genus) capitalizing on the species’ ease of breeding, rapid generation time and ability to readily produce genetic mutants for study. Morgan’s efforts with Drosophila led to the identification of chromosomes as the vector of inheritance for genes, and earned him the 1933 Nobel Prize in Medicine. 

Drosophila are yellow-brown in color, have reddish eyes and transverse black rings across their abdomen (see Figure 1). Females are about 2.5 millimeters long, while males are slightly smaller and may be easily identified by their darker color.  Most importantly, the similarity in the genetic systems of fruit flies and other eukaryotic organisms including humans makes these model organisms extremely useful analogues for the study of common genetic processes including transcription and translation. 

Roughly 75 percent of known human disease genes have recognizable correlates in the fruit fly genome and 50 percent of fly protein sequences have mammalian homologs. (The complete genome of D. melanogaster was completed in 2000.) Chromosomes: genetic storehouses Humans have 23 pairs of chromosomes, or 46 chromosomes in all. Of these, 44 are known as autosomes and consist of matched pairs of chromosomes, known as homologous chromosomes. Each homologous chromosome contains the same set of genes in the same locations along the chromosome, though they may appear in differing alleles, which can affect the passing of genetic traits. 

The current study however, focuses not on the autosomes but on the remaining pair of chromosomes, known as sex chromosomes. Females contain two X chromosomes, which are homologous, as in the case of the autosomes. By contrast, males are identified as having one X chromosome and one (much smaller) Y chromosome.  While drosophila only have a total of 4 chromosomes, they too display sexual dimorphism, with females carrying the double X chromosomes and males carrying XY. The two X chromosomes in female fruit flies, as in mammals, make them a homozygous sex as compared with the XY condition in males, known as heterozygous.

“There are certain aspects to the composition of these sex chromosomes that have intrigued evolutionary biologists for a long time,” Karr notes.  One such issue involves an apparent reduction in the number or the level of expression of sex-linked genes on the X chromosome during spermatogenesis. It is believed that this reduction or silencing of genes on the X chromosome may have profound implications for the evolution of sex chromosomes. During meiotic development of a sperm cell, nature attempts to compensate for the fact that females have two X chromosomes and therefore enjoy a numbers advantage in terms of genes, compared with males.

To overcome the bias for female X-linked genes, the X chromosome undergoes inactivation during meiotic sexual differentiation of male gametes, resulting in an underrepresentation of sex-specific genes on the X chromosome.  Some of these genes, which may be beneficial to males, are moved from the X chromosome, to the autosomes, where they may be expressed.  The relocation of male-biased genes to the autosomes may be due to a selective advantage favoring genes that move off the X chromosome and therefore avoid X-inactivation during meiosis.

Such theories remain controversial however, as statistical analyses are used to evaluate gene frequencies and expression levels, making the proper categorization of genes particularly challenging. “The data we create and generate to support our ideas and hypotheses are messy, there’s noise in them,” Karr says. “Such noise is inherent in the history of evolution.”

In addition to the steady stream of insights into chromosome evolution, Drosophila are being used as a genetic model for a variety of human diseases including Alzheimer's, neurodegenerative disorders, Parkinson's, Huntington's, as well as extending knowledge of the underlying mechanisms involved in aging, oxidative stress, immunity, diabetes, and cancer.

Source: http://phys.org/news/2012-08-fruit-chromosomes-evolution-fertility.html




/ About us

Founded by Russian entrepreneur Dmitry Itskov in February 2011 with the participation of leading Russian specialists in the field of neural interfaces, robotics, artificial organs and systems.

The main goals of the 2045 Initiative: the creation and realization of a new strategy for the development of humanity which meets global civilization challenges; the creation of optimale conditions promoting the spiritual enlightenment of humanity; and the realization of a new futuristic reality based on 5 principles: high spirituality, high culture, high ethics, high science and high technologies. 

The main science mega-project of the 2045 Initiative aims to create technologies enabling the transfer of a individual’s personality to a more advanced non-biological carrier, and extending life, including to the point of immortality. We devote particular attention to enabling the fullest possible dialogue between the world’s major spiritual traditions, science and society.

A large-scale transformation of humanity, comparable to some of the major spiritual and sci-tech revolutions in history, will require a new strategy. We believe this to be necessary to overcome existing crises, which threaten our planetary habitat and the continued existence of humanity as a species. With the 2045 Initiative, we hope to realize a new strategy for humanity's development, and in so doing, create a more productive, fulfilling, and satisfying future.

The "2045" team is working towards creating an international research center where leading scientists will be engaged in research and development in the fields of anthropomorphic robotics, living systems modeling and brain and consciousness modeling with the goal of transferring one’s individual consciousness to an artificial carrier and achieving cybernetic immortality.

An annual congress "The Global Future 2045" is organized by the Initiative to give platform for discussing mankind's evolutionary strategy based on technologies of cybernetic immortality as well as the possible impact of such technologies on global society, politics and economies of the future.

 

Future prospects of "2045" Initiative for society

2015-2020

The emergence and widespread use of affordable android "avatars" controlled by a "brain-computer" interface. Coupled with related technologies “avatars’ will give people a number of new features: ability to work in dangerous environments, perform rescue operations, travel in extreme situations etc.
Avatar components will be used in medicine for the rehabilitation of fully or partially disabled patients giving them prosthetic limbs or recover lost senses.

2020-2025

Creation of an autonomous life-support system for the human brain linked to a robot, ‘avatar’, will save people whose body is completely worn out or irreversibly damaged. Any patient with an intact brain will be able to return to a fully functioning  bodily life. Such technologies will  greatly enlarge  the possibility of hybrid bio-electronic devices, thus creating a new IT revolution and will make  all  kinds of superimpositions of electronic and biological systems possible.

2030-2035

Creation of a computer model of the brain and human consciousness  with the subsequent development of means to transfer individual consciousness  onto an artificial carrier. This development will profoundly change the world, it will not only give everyone the possibility of  cybernetic immortality but will also create a friendly artificial intelligence,  expand human capabilities  and provide opportunities for ordinary people to restore or modify their own brain multiple times.  The final result  at this stage can be a real revolution in the understanding of human nature that will completely change the human and technical prospects for humanity.

2045

This is the time when substance-independent minds will receive new bodies with capacities far exceeding those of ordinary humans. A new era for humanity will arrive!  Changes will occur in all spheres of human activity – energy generation, transportation, politics, medicine, psychology, sciences, and so on.

Today it is hard to imagine a future when bodies consisting of nanorobots  will become affordable  and capable of taking any form. It is also hard to imagine body holograms featuring controlled matter. One thing is clear however:  humanity, for the first time in its history, will make a fully managed evolutionary transition and eventually become a new species. Moreover,  prerequisites for a large-scale  expansion into outer space will be created as well.

 

Key elements of the project in the future

• International social movement
• social network immortal.me
• charitable foundation "Global Future 2045" (Foundation 2045)
• scientific research centre "Immortality"
• business incubator
• University of "Immortality"
• annual award for contribution to the realization of  the project of "Immortality”.

Login as user:

If you are registered on one of these websites, you can get a quick registration. To do this, please select the wesite and follow the instructions.

Login to 2045.com

Email:
You do not have login to 2045.com? Register!
Dear colleagues, partners, friends! If you support ​the 2045 strategic social initiative goals and values, please register on our website.

Quick registration:

If you are registered on one of these websites, you can get a quick registration. To do this, please select the wesite and follow the instructions.

Registration

Name:
Surname:
Field of activity:
Email:
Password:
Enter the code shown:

Show another picture

Восстановить пароль

Email:

Text:
Contact Email:
Attachment ( not greater than 5 Mb. ):
 
Close
avatar project milestones