/ News

22.08.2012

MIT-developed 'microthrusters' could propel small satellites

A penny-sized rocket thruster may soon power the smallest satellites in space. The device, designed by Paulo Lozano, an associate professor of aeronautics and astronautics at MIT, bears little resemblance to today's bulky satellite engines, which are laden with valves, pipes and heavy propellant tanks.

Instead, Lozano's design is a flat, compact square - much like a computer chip - covered with 500 microscopic tips that, when stimulated with voltage, emit tiny beams of ions. Together, the array of spiky tips creates a small puff of charged particles that can help propel a shoebox-sized satellite forward.

"They're so small that you can put several [thrusters] on a vehicle," Lozano says. He adds that a small satellite outfitted with several microthrusters could "not only move to change its orbit, but do other interesting things - like turn and roll."

Lozano and his group in MIT's Space Propulsion Laboratory and Microsystems Technology Laboratory presented their new thruster array at the American Institute of Aeronautics and Astronautics' recent Joint Propulsion Conference.

Cleaning up CubeSat clutter
Today, more than two dozen small satellites, called CubeSats, orbit Earth. Each is slightly bigger than a Rubik's cube, and weighs less than three pounds. Their diminutive size classifies them as "nanosatellites," in contrast with traditional Earth-monitoring behemoths.

These petite satellites are cheap to assemble, and can be launched into space relatively easily: Since they weigh very little, a rocket can carry several CubeSats as secondary payload without needing extra fuel.

But these small satellites lack propulsion systems, and once in space, are usually left to passively spin in orbits close to Earth. After a mission concludes, the satellites burn up in the lower atmosphere.

Lozano says if CubeSats were deployed at higher orbits, they would take much longer to degrade, potentially creating space clutter. As more CubeSats are launched farther from Earth in the future, the resulting debris could become a costly problem.

"These satellites could stay in space forever as trash," says Lozano, who is associate director of the Space Propulsion Laboratory. "This trash could collide with other satellites. ... You could basically stop the Space Age with just a handful of collisions."

Engineering propulsion systems for small satellites could solve the problem of space junk: CubeSats could propel down to lower orbits to burn up, or even act as galactic garbage collectors, pulling retired satellites down to degrade in Earth's atmosphere. However, traditional propulsion systems have proved too bulky for nanosatellites, leaving little space on the vessels for electronics and communication equipment.

Bioinspired propulsion
In contrast, Lozano's microthruster design adds little to a satellite's overall weight. The microchip is composed of several layers of porous metal, the top layer of which is textured with 500 evenly spaced metallic tips. The bottom of the chip contains a small reservoir of liquid - a "liquid plasma" of free-floating ions that is key to the operation of the device.

To explain how the thruster works, Lozano invokes the analogy of a tree: Water from the ground is pulled up a tree through a succession of smaller and smaller pores, first in the roots, then up the trunk, and finally through the leaves, where sunshine evaporates the water as gas. Lozano's microthruster works by a similar capillary action: Each layer of metal contains smaller and smaller pores, which passively suck the ionic liquid up through the chip, to the tops of the metallic tips.

The group engineered a gold-coated plate over the chip, then applied a voltage, generating an electric field between the plate and the thruster's tips. In response, beams of ions escaped the tips, creating a thrust.

The researchers found that an array of 500 tips produces 50 micronewtons of force - an amount of thrust that, on Earth, could only support a small shred of paper. But in zero-gravity space, this tiny force would be enough to propel a two-pound satellite.

Lozano and co-author Dan Courtney also found that very small increases in voltage generated a big increase in force among the thruster's 500 tips, a promising result in terms of energy efficiency.

"It means you have a lot of control with your voltage," Lozano says. "You don't have to increase a lot of voltage to attain higher current. It's a very small, modest increase."

Timothy Graves, manager of electric propulsion and plasma science at Aerospace Corp. in El Segundo, Calif., says the microthruster design stands out among satellite propellant systems for its size and low power consumption.

"Normally, propulsion systems have significant infrastructure associated with propellant feed lines, valves [and] complex power conditioning systems," says Graves, who was not involved in the research. "Additionally, the postage-stamp size of this thruster makes it easy to implement in comparison to other, larger propulsion systems."

The researchers envision a small satellite with several microthrusters, possibly oriented in different directions. When the satellite needs to propel out of orbit, onboard solar panels would temporarily activate the thrusters. In the future, Lozano predicts, microthrusters may even be used to power much larger satellites: Flat panels lined with multiple thrusters could propel a satellite through space, switching directions much like a rudder, or the tail of a fish.

"Just like solar panels you can aim at the sun, you can point the thrusters in any direction you want, and then thrust," Lozano says. "That gives you a lot of flexibility. That's pretty cool."

Source: http://www.spacedaily.com/reports/MIT_developed_microthrusters_could_propel_small_satellites_999.html




/ About us

Founded by Russian entrepreneur Dmitry Itskov in February 2011 with the participation of leading Russian specialists in the field of neural interfaces, robotics, artificial organs and systems.

The main goals of the 2045 Initiative: the creation and realization of a new strategy for the development of humanity which meets global civilization challenges; the creation of optimale conditions promoting the spiritual enlightenment of humanity; and the realization of a new futuristic reality based on 5 principles: high spirituality, high culture, high ethics, high science and high technologies. 

The main science mega-project of the 2045 Initiative aims to create technologies enabling the transfer of a individual’s personality to a more advanced non-biological carrier, and extending life, including to the point of immortality. We devote particular attention to enabling the fullest possible dialogue between the world’s major spiritual traditions, science and society.

A large-scale transformation of humanity, comparable to some of the major spiritual and sci-tech revolutions in history, will require a new strategy. We believe this to be necessary to overcome existing crises, which threaten our planetary habitat and the continued existence of humanity as a species. With the 2045 Initiative, we hope to realize a new strategy for humanity's development, and in so doing, create a more productive, fulfilling, and satisfying future.

The "2045" team is working towards creating an international research center where leading scientists will be engaged in research and development in the fields of anthropomorphic robotics, living systems modeling and brain and consciousness modeling with the goal of transferring one’s individual consciousness to an artificial carrier and achieving cybernetic immortality.

An annual congress "The Global Future 2045" is organized by the Initiative to give platform for discussing mankind's evolutionary strategy based on technologies of cybernetic immortality as well as the possible impact of such technologies on global society, politics and economies of the future.

 

Future prospects of "2045" Initiative for society

2015-2020

The emergence and widespread use of affordable android "avatars" controlled by a "brain-computer" interface. Coupled with related technologies “avatars’ will give people a number of new features: ability to work in dangerous environments, perform rescue operations, travel in extreme situations etc.
Avatar components will be used in medicine for the rehabilitation of fully or partially disabled patients giving them prosthetic limbs or recover lost senses.

2020-2025

Creation of an autonomous life-support system for the human brain linked to a robot, ‘avatar’, will save people whose body is completely worn out or irreversibly damaged. Any patient with an intact brain will be able to return to a fully functioning  bodily life. Such technologies will  greatly enlarge  the possibility of hybrid bio-electronic devices, thus creating a new IT revolution and will make  all  kinds of superimpositions of electronic and biological systems possible.

2030-2035

Creation of a computer model of the brain and human consciousness  with the subsequent development of means to transfer individual consciousness  onto an artificial carrier. This development will profoundly change the world, it will not only give everyone the possibility of  cybernetic immortality but will also create a friendly artificial intelligence,  expand human capabilities  and provide opportunities for ordinary people to restore or modify their own brain multiple times.  The final result  at this stage can be a real revolution in the understanding of human nature that will completely change the human and technical prospects for humanity.

2045

This is the time when substance-independent minds will receive new bodies with capacities far exceeding those of ordinary humans. A new era for humanity will arrive!  Changes will occur in all spheres of human activity – energy generation, transportation, politics, medicine, psychology, sciences, and so on.

Today it is hard to imagine a future when bodies consisting of nanorobots  will become affordable  and capable of taking any form. It is also hard to imagine body holograms featuring controlled matter. One thing is clear however:  humanity, for the first time in its history, will make a fully managed evolutionary transition and eventually become a new species. Moreover,  prerequisites for a large-scale  expansion into outer space will be created as well.

 

Key elements of the project in the future

• International social movement
• social network immortal.me
• charitable foundation "Global Future 2045" (Foundation 2045)
• scientific research centre "Immortality"
• business incubator
• University of "Immortality"
• annual award for contribution to the realization of  the project of "Immortality”.

Login as user:

If you are registered on one of these websites, you can get a quick registration. To do this, please select the wesite and follow the instructions.

Login to 2045.com

Email:
You do not have login to 2045.com? Register!
Dear colleagues, partners, friends! If you support ​the 2045 strategic social initiative goals and values, please register on our website.

Quick registration:

If you are registered on one of these websites, you can get a quick registration. To do this, please select the wesite and follow the instructions.

Registration

Name:
Surname:
Field of activity:
Email:
Password:
Enter the code shown:

Show another picture

Восстановить пароль

Email:

Text:
Contact Email:
Attachment ( not greater than 5 Mb. ):
 
Close
avatar project milestones