/ News
Meet Spaun, The Most Complex Simulated Brain Ever
The computer program recognizes items, learns and remembers--and even passes some basic components of an IQ test.
Spaun Learns And Remembers A screen capture from a simulation movie of Spaun in action shows the input image on the right. The output is drawn on the surface below Spaun's arm. Neuron activity is approximately mapped to relevant cortical areas and shown in color (red is high activity, blue is low). Chris Eliasmith
Chris Eliasmith has spent years trying to figure out the ingredients and precise recipe for building a brain. He even has a book coming out in February--called “How to Build A Brain”--describing gray matter, dendritic connections and other brainy anatomy. As he was writing it, it occurred to him that he might want to demonstrate it. So he built Spaun, the most complex simulation of a functioning brain built to date.
Spaun, which stands for Semantic Pointer Architecture Unified Network, is a computer model that can recognize numbers, remember them, figure out numeric sequences, and even write them down with a robotic arm. It’s a major leap in brain simulation, because it’s the first model that can actually emulate behaviors while also modeling the physiology that underlies them.
The program consists of 2.5 million simulated neurons organized into subsystems that are designed to resemble specific brain regions, including the prefrontal cortex, basil ganglia and thalamus. It has a virtual eye and a robotic arm, and can perform a series of tasks, each different from one another.
It’s different from other artificial brains like IBM’s Watson in that it’s designed to mimic behavior, not simply solve for function in the best possible way. Where IBM wants Watson to do one thing supremely well--search--Big Blue isn’t interested in how it’s done. Other IBM brain simulations, like the massive Blue Brain Project, can mimic brain spatial structure and connectivity--but they can’t mimic how this structure is tied to behavior, Eliasmith explained in an interview.
“These artificial brains don’t actually do anything. They don’t see, they don’t remember, they don’t recognize objects,” he said. “They sit there and generate complex voltage patterns, but those complex voltage patterns aren’t tied to behavior.”
Eliasmith, at the University of Waterloo in Canada, operates the computer simulation on a supercomputer. Spaun is divided into two main structures, representing the cerebral cortex and the basal ganglia. The neurons are wired together in a physiologically realistic way, and they mimic what researchers think the basal ganglia and cortex are doing during certain tasks.
Imagine it sees a series of numbers, perhaps 1 2 3; 5 6 7; and 3 4 ?. Artificial neurons extract visual data, making sense of the patterns. Based on the visual information it receives, the program routes data to task-specific sections of the cortex, so it can perform a series of tasks. These involve testing memory, copying visual information, counting, and so on. It can even perform basic logic questions like the number-puzzle above, which are found on IQ tests.
“Depending on what’s going on in the cortex, it takes information from one part of the cortex and routes it to a different part of the cortex. Every time it does that, it updates the state of the cortex, and tries to figure out what’s the next best thing to do,” Eliasmith said. “You can think of the basal ganglia as controlling the flow of information through cortex, in order to solve different tasks.”
Human brains are eminently capable at doing this, Eliasmith noted--people can sit and type at a computer, answer a question about a random fact, go make a sandwich, and then go drive a car, all in short sequence.
“This model is trying to address that issue of cognitive flexibility. How do we switch between tasks, how do we use the same components in our head to do all those different tasks?” he said.
Still, Spaun has its limits--it is relatively simple, compared to real neural networks, and it’s hard-wired, lacking the plasticity and adaptive capability human brains are known to possess. Eliasmith is working on updates that would allow it to learn new tasks and perceive instructions on a more complex level. He is even working on a program in which Spaun isn’t given explicit instructions, but rather positive or negative feedback. “We would just tell it if it is doing a good job or a bad job,” he said. “Eventually it would discover its own strategy for accomplishing its own task.”
In its ability to mimic the physiology and related behavior of the brain, Spaun serves higher purposes for both neuroscience and computer science, Eliasmith said.
“It lets us understand how the brain, the biological substrate, and behavior relate. That’s important for all sorts of health applications,” he said. He can kill off neurons systematically and watch how their deaths affect performance, simulating the process that happens as people age, for instance. Or, Spaun can help other machines emulate brain function more accurately and more efficiently, he said. “We can try to discover the algorithms being used by biology, and maybe understand the principles behind them, to build more artificial agents.”
The paper appears in the journal Science.
Source: http://www.popsci.com/science/article/2012-11/meet-spaun-first-computer-model-complex-brain-behavior
/ About us
Founded by Russian entrepreneur Dmitry Itskov in February 2011 with the participation of leading Russian specialists in the field of neural interfaces, robotics, artificial organs and systems.
The main goals of the 2045 Initiative: the creation and realization of a new strategy for the development of humanity which meets global civilization challenges; the creation of optimale conditions promoting the spiritual enlightenment of humanity; and the realization of a new futuristic reality based on 5 principles: high spirituality, high culture, high ethics, high science and high technologies.
The main science mega-project of the 2045 Initiative aims to create technologies enabling the transfer of a individual’s personality to a more advanced non-biological carrier, and extending life, including to the point of immortality. We devote particular attention to enabling the fullest possible dialogue between the world’s major spiritual traditions, science and society.
A large-scale transformation of humanity, comparable to some of the major spiritual and sci-tech revolutions in history, will require a new strategy. We believe this to be necessary to overcome existing crises, which threaten our planetary habitat and the continued existence of humanity as a species. With the 2045 Initiative, we hope to realize a new strategy for humanity's development, and in so doing, create a more productive, fulfilling, and satisfying future.
The "2045" team is working towards creating an international research center where leading scientists will be engaged in research and development in the fields of anthropomorphic robotics, living systems modeling and brain and consciousness modeling with the goal of transferring one’s individual consciousness to an artificial carrier and achieving cybernetic immortality.
An annual congress "The Global Future 2045" is organized by the Initiative to give platform for discussing mankind's evolutionary strategy based on technologies of cybernetic immortality as well as the possible impact of such technologies on global society, politics and economies of the future.
Future prospects of "2045" Initiative for society
2015-2020
The emergence and widespread use of affordable android "avatars" controlled by a "brain-computer" interface. Coupled with related technologies “avatars’ will give people a number of new features: ability to work in dangerous environments, perform rescue operations, travel in extreme situations etc.
Avatar components will be used in medicine for the rehabilitation of fully or partially disabled patients giving them prosthetic limbs or recover lost senses.
2020-2025
Creation of an autonomous life-support system for the human brain linked to a robot, ‘avatar’, will save people whose body is completely worn out or irreversibly damaged. Any patient with an intact brain will be able to return to a fully functioning bodily life. Such technologies will greatly enlarge the possibility of hybrid bio-electronic devices, thus creating a new IT revolution and will make all kinds of superimpositions of electronic and biological systems possible.
2030-2035
Creation of a computer model of the brain and human consciousness with the subsequent development of means to transfer individual consciousness onto an artificial carrier. This development will profoundly change the world, it will not only give everyone the possibility of cybernetic immortality but will also create a friendly artificial intelligence, expand human capabilities and provide opportunities for ordinary people to restore or modify their own brain multiple times. The final result at this stage can be a real revolution in the understanding of human nature that will completely change the human and technical prospects for humanity.
2045
This is the time when substance-independent minds will receive new bodies with capacities far exceeding those of ordinary humans. A new era for humanity will arrive! Changes will occur in all spheres of human activity – energy generation, transportation, politics, medicine, psychology, sciences, and so on.
Today it is hard to imagine a future when bodies consisting of nanorobots will become affordable and capable of taking any form. It is also hard to imagine body holograms featuring controlled matter. One thing is clear however: humanity, for the first time in its history, will make a fully managed evolutionary transition and eventually become a new species. Moreover, prerequisites for a large-scale expansion into outer space will be created as well.
Key elements of the project in the future
• International social movement
• social network immortal.me
• charitable foundation "Global Future 2045" (Foundation 2045)
• scientific research centre "Immortality"
• business incubator
• University of "Immortality"
• annual award for contribution to the realization of the project of "Immortality”.