/ News
Silicone Liquid Crystal Stiffens With Repeated Compression
Squeeze a piece of silicone and it quickly returns to its original shape, as squishy as ever. But scientists at Rice University have discovered that the liquid crystal phase of silicone becomes 90 percent stiffer when silicone is gently and repeatedly compressed. Their research could lead to new strategies for self-healing materials or biocompatible materials that mimic human tissues.
A paper on the research appeared this month in Nature's online journal Nature Communications.
Silicone in its liquid crystal phase is somewhere between a solid and liquid state, which makes it very handy for many things. So Rice polymer scientist Rafael Verduzco was intrigued to see a material he thought he knew well perform in a way he didn't expect. "I was really surprised to find out, when my student did these measurements, that it became stiffer," he said. "In fact, I didn't believe him at first."
The researchers had intended to quantify results seen a few years ago by former Rice graduate student Brent Carey, who subjected a nanotube-infused polymer to a process called repetitive dynamic compression. An astounding 3.5 million compressions (five per second) over a week toughened the material, just like muscles after a workout, by 12 percent. What Verduzco and lead author/Rice graduate student Aditya Agrawal came across was a material that shows an even stronger effect. They had originally planned to study liquid crystal silicone/nanotube composites similar to what Carey tested, but decided to look at liquid crystal silicones without the nanotubes first. "It's always better to start simple," Verduzco said.
Silicones are made of long, flexible chains that are entangled and knotted together like a bowl of spaghetti. In conventional silicones the chains are randomly oriented, but the group studied a special type of silicone known as a liquid crystal elastomer. In these materials, the chains organize themselves into rod-shaped coils. When the material was compressed statically, like squeezing a piece of Jell-O or stretching a rubber band, it snapped right back into its original shape. The entanglements and knots between chains prevent it from changing shape. But when dynamically compressed for 16 hours, the silicone held its new shape for weeks and, surprisingly, was much stiffer than the original material.
"The molecules in a liquid crystal elastomer are like rods that want to point in a particular direction," Verduzco said. "In the starting sample, the rods are randomly oriented, but when the material is deformed, they rotate and eventually end up pointing in the same direction. This is what gives rise to the stiffening. It's surprising that by a relatively gentle but repetitive compression, you can work out all the entanglements and knots to end up with a sample where all the polymer rods are aligned."
Before testing, the researchers chemically attached liquid crystal molecules -- similar to those used in LCD displays -- to the silicones. While they couldn't see the rods, X-ray diffraction images showed that the side groups -- and thus the rods -- had aligned under compression. "They're always coupled. If the side group orients in one direction, the polymer chain wants to follow it. Or vice versa," Verduzco said.
The X-rays also showed that samples heated to 70 degrees Celsius slipped out of the liquid crystal phase and did not stiffen, Verduzco said. The stiffening effect is reversible, he said, as heating and cooling a stiffened sample will allow it to relax back into its original state within hours.
Verduzco plans to compress silicones in another phase, called smectic, in which the polymer rods align in layers. "People have been wanting to use these in displays, but they're very hard to align. A repetitive compression may be a simple way to get around this challenge," he said.
Since silicones are biocompatible, they can also be used for tissue engineering. Soft tissues in the body like cartilage need to maintain strength under repeated compression and deformation, and liquid crystal elastomers exhibit similar durability, he said.
The paper's co-authors include Carey, a Rice alumnus and now a scientist at Owens Corning; graduate student Alin Chipara; Yousif Shamoo, a professor of biochemistry and cell biology; Pulickel Ajayan, the Benjamin M. and Mary Greenwood Anderson Professor in Engineering and a professor of mechanical engineering and materials science, chemistry and chemical and biomolecular engineering; and Walter Chapman, the William W. Akers Professor of Chemical and Biomolecular Engineering, all of Rice; and Prabir Patra, an assistant professor of mechanical engineering at the University of Bridgeport with a research appointment at Rice. Verduzco is an assistant professor of chemical and biomolecular engineering.
The research was supported by an IBB Hamill Innovations Grant, the Robert A. Welch Foundation, the National Science Foundation and the National Institutes of Health, through the National Institute of Allergy and Infectious Diseases.
Source: http://www.sciencedaily.com/releases/2013/04/130429164952.htm
/ About us
Founded by Russian entrepreneur Dmitry Itskov in February 2011 with the participation of leading Russian specialists in the field of neural interfaces, robotics, artificial organs and systems.
The main goals of the 2045 Initiative: the creation and realization of a new strategy for the development of humanity which meets global civilization challenges; the creation of optimale conditions promoting the spiritual enlightenment of humanity; and the realization of a new futuristic reality based on 5 principles: high spirituality, high culture, high ethics, high science and high technologies.
The main science mega-project of the 2045 Initiative aims to create technologies enabling the transfer of a individual’s personality to a more advanced non-biological carrier, and extending life, including to the point of immortality. We devote particular attention to enabling the fullest possible dialogue between the world’s major spiritual traditions, science and society.
A large-scale transformation of humanity, comparable to some of the major spiritual and sci-tech revolutions in history, will require a new strategy. We believe this to be necessary to overcome existing crises, which threaten our planetary habitat and the continued existence of humanity as a species. With the 2045 Initiative, we hope to realize a new strategy for humanity's development, and in so doing, create a more productive, fulfilling, and satisfying future.
The "2045" team is working towards creating an international research center where leading scientists will be engaged in research and development in the fields of anthropomorphic robotics, living systems modeling and brain and consciousness modeling with the goal of transferring one’s individual consciousness to an artificial carrier and achieving cybernetic immortality.
An annual congress "The Global Future 2045" is organized by the Initiative to give platform for discussing mankind's evolutionary strategy based on technologies of cybernetic immortality as well as the possible impact of such technologies on global society, politics and economies of the future.
Future prospects of "2045" Initiative for society
2015-2020
The emergence and widespread use of affordable android "avatars" controlled by a "brain-computer" interface. Coupled with related technologies “avatars’ will give people a number of new features: ability to work in dangerous environments, perform rescue operations, travel in extreme situations etc.
Avatar components will be used in medicine for the rehabilitation of fully or partially disabled patients giving them prosthetic limbs or recover lost senses.
2020-2025
Creation of an autonomous life-support system for the human brain linked to a robot, ‘avatar’, will save people whose body is completely worn out or irreversibly damaged. Any patient with an intact brain will be able to return to a fully functioning bodily life. Such technologies will greatly enlarge the possibility of hybrid bio-electronic devices, thus creating a new IT revolution and will make all kinds of superimpositions of electronic and biological systems possible.
2030-2035
Creation of a computer model of the brain and human consciousness with the subsequent development of means to transfer individual consciousness onto an artificial carrier. This development will profoundly change the world, it will not only give everyone the possibility of cybernetic immortality but will also create a friendly artificial intelligence, expand human capabilities and provide opportunities for ordinary people to restore or modify their own brain multiple times. The final result at this stage can be a real revolution in the understanding of human nature that will completely change the human and technical prospects for humanity.
2045
This is the time when substance-independent minds will receive new bodies with capacities far exceeding those of ordinary humans. A new era for humanity will arrive! Changes will occur in all spheres of human activity – energy generation, transportation, politics, medicine, psychology, sciences, and so on.
Today it is hard to imagine a future when bodies consisting of nanorobots will become affordable and capable of taking any form. It is also hard to imagine body holograms featuring controlled matter. One thing is clear however: humanity, for the first time in its history, will make a fully managed evolutionary transition and eventually become a new species. Moreover, prerequisites for a large-scale expansion into outer space will be created as well.
Key elements of the project in the future
• International social movement
• social network immortal.me
• charitable foundation "Global Future 2045" (Foundation 2045)
• scientific research centre "Immortality"
• business incubator
• University of "Immortality"
• annual award for contribution to the realization of the project of "Immortality”.