/ News
High-speed customization of novel nanoparticles for drug delivery and electronics
A new coating technology developed at MIT, combined with a novel nanoparticle-manufacturing technology developed at the University of North Carolina at Chapel Hill, may offer scientists a way to quickly mass-produce tailored nanoparticles that are specially coated for specific applications, including medicines and electronics.
Using this new combination of the two existing technologies, scientists can produce very small, uniform particles with customized layers of material that can carry drugs or other molecules to interact with their environment, or even target specific types of cells.
Creating highly reproducible batches of precisely engineered, coated nanoparticles is important for the safe manufacture of drugs and obtaining regulatory approval, says Paula Hammond, the David H. Koch Professor in Chemical Engineering at MIT and a member of MIT’s Koch Institute for Integrative Cancer Research.
‘A very versatile platform’
The layer-by-layer application processes commonly used today to coat nanoparticles take too long to be useful for rapid, large-scale manufacture: For each layer, the particles must be soaked in a solution of the coating material, then spun in a centrifuge to remove excess coating. Applying each layer takes about an hour.
In the new study, the MIT researchers used a spray-based technique, which allows them to apply each layer in just a few seconds. This technology was previously developed in the Hammond lab and is now being commercialized bySvaya Nanotechnologies.
Hammond combined this approach with a nanoparticle-manufacturing technology known as the PRINT (Particle Replication In Non-wetting Templates) platform, which was developed in the DeSimone lab at UNC and is now being commercialized by Liquidia Technologies. Liquidia focuses on using the PRINT platform to create novel nanotechnology-based health-care products, vaccines and therapeutics.
The PRINT platform is a continuous roll-to-roll particle-molding technology that enables the design and mass production of precisely engineered particles of controlled size, shape and chemical composition. To make particles like the ones used in this study, a mixture of polymers and drug molecules (or other payload) is applied to a large roll of film that consists of a nano-sized mold containing features of the desired shape and size.
The mixture fills every feature of the mold and solidifies to create billions of nanoparticles. Particles are removed from the mold using another roll of adhesive film, which can then be sprayed with layers of specialized coatings using Hammond’s novel technology and separated into individual particles.
“The idea was to put these two industrial-scale processes together and create a sophisticated, beautifully coated nanoparticle, in the same way that bakeries glaze your favorite donut on the conveyor belt,” Hammond says.
“The combination of PRINT and spray layer-by-layer provides a versatile platform for rapidly modifying the surface chemistry of particles,” says Frank Caruso, a professor of chemical and biomolecular engineering at the University of Melbourne who was not part of the research team. “This approach also holds promise for high throughput in the development of particle-delivery systems for nanomedicine applications.”
Multiple functions
This new process promises to yield large quantities of coated nanoparticles while dramatically reducing production time. It also allows for custom design of a wide variety of materials, both in the nanoparticle core and in the coating, for applications including electronics, drug delivery, vaccines, wound healing or imaging, Morton says.
To demonstrate the potential usefulness of this technique, the researchers created particles coated with hyaluronic acid, which has been shown to target proteins, called CD44 receptors, that are found in high levels on aggressive cancer cells. They found that breast cancer cells grown in the lab engulf particles coated with layers of hyaluronic acid much more efficiently than particles without the coatings or with coatings not containing hyaluronic acid.
In follow-up studies, the researchers plan to design particles containing cancer drugs and cancer-fighting coatings to see if they can effectively shrink tumors. Some of those particles may include combinations, such as two different chemotherapy drugs, or a drug combined with RNA molecules that target cancerous genes. These combinations can work together in a synergistic fashion to selectively disarm and kill cancer cells.
The research was funded by the NIH-funded Centers for Cancer Nanotechnology Excellence at MIT and UNC, a National Science Foundation graduate research fellowship, and a National Sciences and Engineering Research Council postdoctoral fellowship.
Source: http://www.kurzweilai.net/high-speed-customization-of-novel-nanoparticles-for-drug-delivery-and-electronics
/ About us
Founded by Russian entrepreneur Dmitry Itskov in February 2011 with the participation of leading Russian specialists in the field of neural interfaces, robotics, artificial organs and systems.
The main goals of the 2045 Initiative: the creation and realization of a new strategy for the development of humanity which meets global civilization challenges; the creation of optimale conditions promoting the spiritual enlightenment of humanity; and the realization of a new futuristic reality based on 5 principles: high spirituality, high culture, high ethics, high science and high technologies.
The main science mega-project of the 2045 Initiative aims to create technologies enabling the transfer of a individual’s personality to a more advanced non-biological carrier, and extending life, including to the point of immortality. We devote particular attention to enabling the fullest possible dialogue between the world’s major spiritual traditions, science and society.
A large-scale transformation of humanity, comparable to some of the major spiritual and sci-tech revolutions in history, will require a new strategy. We believe this to be necessary to overcome existing crises, which threaten our planetary habitat and the continued existence of humanity as a species. With the 2045 Initiative, we hope to realize a new strategy for humanity's development, and in so doing, create a more productive, fulfilling, and satisfying future.
The "2045" team is working towards creating an international research center where leading scientists will be engaged in research and development in the fields of anthropomorphic robotics, living systems modeling and brain and consciousness modeling with the goal of transferring one’s individual consciousness to an artificial carrier and achieving cybernetic immortality.
An annual congress "The Global Future 2045" is organized by the Initiative to give platform for discussing mankind's evolutionary strategy based on technologies of cybernetic immortality as well as the possible impact of such technologies on global society, politics and economies of the future.
Future prospects of "2045" Initiative for society
2015-2020
The emergence and widespread use of affordable android "avatars" controlled by a "brain-computer" interface. Coupled with related technologies “avatars’ will give people a number of new features: ability to work in dangerous environments, perform rescue operations, travel in extreme situations etc.
Avatar components will be used in medicine for the rehabilitation of fully or partially disabled patients giving them prosthetic limbs or recover lost senses.
2020-2025
Creation of an autonomous life-support system for the human brain linked to a robot, ‘avatar’, will save people whose body is completely worn out or irreversibly damaged. Any patient with an intact brain will be able to return to a fully functioning bodily life. Such technologies will greatly enlarge the possibility of hybrid bio-electronic devices, thus creating a new IT revolution and will make all kinds of superimpositions of electronic and biological systems possible.
2030-2035
Creation of a computer model of the brain and human consciousness with the subsequent development of means to transfer individual consciousness onto an artificial carrier. This development will profoundly change the world, it will not only give everyone the possibility of cybernetic immortality but will also create a friendly artificial intelligence, expand human capabilities and provide opportunities for ordinary people to restore or modify their own brain multiple times. The final result at this stage can be a real revolution in the understanding of human nature that will completely change the human and technical prospects for humanity.
2045
This is the time when substance-independent minds will receive new bodies with capacities far exceeding those of ordinary humans. A new era for humanity will arrive! Changes will occur in all spheres of human activity – energy generation, transportation, politics, medicine, psychology, sciences, and so on.
Today it is hard to imagine a future when bodies consisting of nanorobots will become affordable and capable of taking any form. It is also hard to imagine body holograms featuring controlled matter. One thing is clear however: humanity, for the first time in its history, will make a fully managed evolutionary transition and eventually become a new species. Moreover, prerequisites for a large-scale expansion into outer space will be created as well.
Key elements of the project in the future
• International social movement
• social network immortal.me
• charitable foundation "Global Future 2045" (Foundation 2045)
• scientific research centre "Immortality"
• business incubator
• University of "Immortality"
• annual award for contribution to the realization of the project of "Immortality”.