/ News
South Korean Cheetaroid Wants to Join the Cat Robot Race
Four-legged robots are multiplying in labs around the world, and a number of projects are drawing inspiration from one particular family of animals: big cats. This new breed includes Boston Dynamics's Cheetah, MIT's Cheetah Robot, Osaka University's Pneupard, and EPFL's CheetahCub. The latest specimen comes from South Korea and is called Cheetaroid.
Now, you may be asking why we need quadruped robots and, in particular, cat-inspired ones. The creators of the Cheetaroid, a team from Sogang University's Robotic Systems Control Laboratory, led by Professor Kyoungchul Kong, are envisioning different applications. They illustrate those in the image below, which shows how Cheetaroid could be used to assist firefighters, soldiers, disabled individuals, and—well, we're not exactly sure what's going on in the lower right image but we wouldn't want to be the guy in the bite suit.
Lately, most quadruped projects have focused on building faster and more efficient robots. One of the design challenges is choosing which actuators to use in place of the leg muscles. The actuators, which can take the form of electric motors, hydraulics, or even air-powered pneumatics, have to be relatively small and lightweight, yet also fast and powerful. That's a difficult combination to achieve, leading some teams to design their own hybrid systems in an attempt to get the best of both worlds.
For its robot, the Cheetaroid team decided to build its own direct-drive DC linear actuator. The idea is that this kind of actuator has lower friction and backlash than geared motors, and since it doesn't require gear reducers (which are used to amplify torque) they are more energy efficient and precise. The challenge is that by using linear actuators, the control system must account for changes in overall joint torque, which depends on the joint's angle, during locomotion.
After running some simulations to determine the optimum actuator requirements, the team set out to design the device itself. Most linear actuators contain a steel yoke to concentrate the magnetic fields that ultimately push and pull the moving elements attached to the leg joints. For their new actuator, the researchers ditched the yoke to save weight and covered the electromagnetic coils with dual-layer cores to retain much of the magnetic field and force capacity. The images below show the overall design and how they plan to integrate the actuators into the robot:
So far the team has built and tested one of the robot's hind legs and found that it performed in line with their simulations. The next step will be simulating the rest of the body and determine whether Cheetaroid can walk and gallop. Professor Kong says that, in parallel with the mechanical design, his team is working on effective control algorithms to change between gaits.
The Cheetaroid remains a work in progress, and we look forward to seeing videos of the completed robot taking its first steps. In the mean time, the researchers have been exploring alternative designs. One of them is a Cheetaroid version that uses a single motor to power all four limbs:
The South Korean team, which included Byeonghun Na, Hyunjin Choi, and Professor Kong, describe their work in the paper "Design of a Direct-Driven Linear Actuator for Development of a Cheetaroid Robot," presented at the2013 IEEE International Conference on Robotics and Automation. They acknowledge Seokjin Kim for his assistance in designing the actuator.
And finally, a note to all researchers developing fast-running quadrupeds: If it's not too much to ask, may we suggest that all teams get together for a Big Cat Robot Race?
Source: http://spectrum.ieee.org/automaton/robotics/robotics-hardware/south-korea-cheetaroid-quadruped-robot
/ About us
Founded by Russian entrepreneur Dmitry Itskov in February 2011 with the participation of leading Russian specialists in the field of neural interfaces, robotics, artificial organs and systems.
The main goals of the 2045 Initiative: the creation and realization of a new strategy for the development of humanity which meets global civilization challenges; the creation of optimale conditions promoting the spiritual enlightenment of humanity; and the realization of a new futuristic reality based on 5 principles: high spirituality, high culture, high ethics, high science and high technologies.
The main science mega-project of the 2045 Initiative aims to create technologies enabling the transfer of a individual’s personality to a more advanced non-biological carrier, and extending life, including to the point of immortality. We devote particular attention to enabling the fullest possible dialogue between the world’s major spiritual traditions, science and society.
A large-scale transformation of humanity, comparable to some of the major spiritual and sci-tech revolutions in history, will require a new strategy. We believe this to be necessary to overcome existing crises, which threaten our planetary habitat and the continued existence of humanity as a species. With the 2045 Initiative, we hope to realize a new strategy for humanity's development, and in so doing, create a more productive, fulfilling, and satisfying future.
The "2045" team is working towards creating an international research center where leading scientists will be engaged in research and development in the fields of anthropomorphic robotics, living systems modeling and brain and consciousness modeling with the goal of transferring one’s individual consciousness to an artificial carrier and achieving cybernetic immortality.
An annual congress "The Global Future 2045" is organized by the Initiative to give platform for discussing mankind's evolutionary strategy based on technologies of cybernetic immortality as well as the possible impact of such technologies on global society, politics and economies of the future.
Future prospects of "2045" Initiative for society
2015-2020
The emergence and widespread use of affordable android "avatars" controlled by a "brain-computer" interface. Coupled with related technologies “avatars’ will give people a number of new features: ability to work in dangerous environments, perform rescue operations, travel in extreme situations etc.
Avatar components will be used in medicine for the rehabilitation of fully or partially disabled patients giving them prosthetic limbs or recover lost senses.
2020-2025
Creation of an autonomous life-support system for the human brain linked to a robot, ‘avatar’, will save people whose body is completely worn out or irreversibly damaged. Any patient with an intact brain will be able to return to a fully functioning bodily life. Such technologies will greatly enlarge the possibility of hybrid bio-electronic devices, thus creating a new IT revolution and will make all kinds of superimpositions of electronic and biological systems possible.
2030-2035
Creation of a computer model of the brain and human consciousness with the subsequent development of means to transfer individual consciousness onto an artificial carrier. This development will profoundly change the world, it will not only give everyone the possibility of cybernetic immortality but will also create a friendly artificial intelligence, expand human capabilities and provide opportunities for ordinary people to restore or modify their own brain multiple times. The final result at this stage can be a real revolution in the understanding of human nature that will completely change the human and technical prospects for humanity.
2045
This is the time when substance-independent minds will receive new bodies with capacities far exceeding those of ordinary humans. A new era for humanity will arrive! Changes will occur in all spheres of human activity – energy generation, transportation, politics, medicine, psychology, sciences, and so on.
Today it is hard to imagine a future when bodies consisting of nanorobots will become affordable and capable of taking any form. It is also hard to imagine body holograms featuring controlled matter. One thing is clear however: humanity, for the first time in its history, will make a fully managed evolutionary transition and eventually become a new species. Moreover, prerequisites for a large-scale expansion into outer space will be created as well.
Key elements of the project in the future
• International social movement
• social network immortal.me
• charitable foundation "Global Future 2045" (Foundation 2045)
• scientific research centre "Immortality"
• business incubator
• University of "Immortality"
• annual award for contribution to the realization of the project of "Immortality”.