/ News
Shape-Shifting Disease Proteins May Explain Neurodegenerative Variation
Neurodegenerative diseases are not all alike. Two individuals suffering from the same disease may experience very different age of onset, symptoms, severity, and constellation of impairments, as well as different rates of disease progression. Researchers in the Perelman School of Medicine at the University of Pennsylvania have shown one disease protein can morph into different strains and promote misfolding of other disease proteins commonly found in Alzheimer's, Parkinson's and other related neurodegenerative diseases.
Virginia M.Y. Lee, PhD, MBA, professor of Pathology and Laboratory Medicine and director of the Center for Neurodegenerative Disease Research, with co-director, John Q. Trojanowski MD, PhD, postdoctoral fellow Jing L. Guo, PhD, and colleagues, discovered that alpha-synuclein, a protein that forms sticky clumps in the neurons of Parkinson's disease patients, can exist in at least two different structural shapes, or "strains," when it clumps into fibrils, despite having precisely the same chemical composition.
These two strains differ in their ability to promote fibril formation of normal alpha-synuclein, as well as the protein tau, which forms neurofibrillary tangles in individuals with Alzheimer's disease.
Importantly, these alpha-synuclein strains are not static; they somehow evolve, such that fibrils that initially cannot promote tau tangles acquire that ability after multiple rounds of "seeded" fibril formation in test tubes.
The findings appear in the July 3rd issue of Cell.
Morphed Misfolding Proteins Found In Overlapping Neurodegenerative Diseases
Tau and alpha-synuclein protein clumps are hallmarks of separate diseases Alzheimer's and Parkinson's, respectively. Yet these two proteins are often found entangled in diseased brains of patients who may manifest symptoms of both disorders.
One possible explanation for this convergence of Alzheimer's and Parkinson's disease pathology in the same patient is a global disruption in protein folding. But, Guo and Lee showed that one strain of alpha-synuclein fibrils which cannot promote tau fibrillization actually evolved into another strain that could efficiently cause tau to fibrillize in cultured neurons, although both strains are identical at the amino acid sequence level. Guo and Lee called the starting conformation "Strain A," and the evolved conformation, "Strain B."
To figure out how A and B differ, Guo showed that the two strains folded into different shapes, as indicated by their differential reactivity to antibodies and sensitivity to protein-degrading enzymes. The two strains also differed in their ability to promote tau fibrillization and pathology in mouse brains, mimicking the results from cultured cells. When analyzing post-mortem brains of Parkinson's patients, the team found at least two distinct forms of pathological alpha-synuclein.
Lee and her team speculate that in humans, alpha-synuclein aggregates may shift their shapes as they pass from cell to cell (much like a cube of silly putty being re-shaped to form a sphere), possibly developing the ability to entangle other proteins such as tau along the way. That process, in turn, could theoretically yield distinct types of alpha-synuclein pathologies that are observed in different brain regions of Parkinson's disease patients.
While further research is needed to confirm and extend these findings, they have potentially significant implications for patients afflicted with Parkinson's and other neurodegenerative diseases. For example, Lee explains, they could account for some of the heterogeneity observed in Parkinson's disease. Different strains of pathological alpha-synuclein may promote formation of distinct types of alpha-synuclein aggregates that may or may not induce tau pathology in different brain regions and in different patients. That, in turn, could explain why some Parkinson's patients, for example, experience only motor impairments while others ultimately develop cognitive impairments.
The findings also have potential therapeutic implications, Lee says. By recognizing that pathological alpha-synuclein can exist in different forms that are linked with different impairments, researchers can now selectively target one or the other, or both, for instance with strain-selective antibodies.
"What we've found opens up new areas for developing therapies, and particularly immunotherapies, for Parkinson's and other neurodegenerative diseases," Lee says.
Other study authors are Dustin J. Covell, Joshua P. Daniels, Michiyo Iba, Anna Stieber, Bin Zhang, Dawn M. Riddle, Linda K. Kwong, Yan Xu, all from Penn.
Research funding was provided the National Institute on Aging (AG017586) and the National Institute of Neurological Disease and Stroke (NS053488), the Marian S. Ware Alzheimer Program, the Parkinson's Council, the Dr. Arthur Peck Fund, and the Jeff and Anne Keefer Fund.
Source: http://www.sciencedaily.com/releases/2013/07/130703120552.htm
/ About us
Founded by Russian entrepreneur Dmitry Itskov in February 2011 with the participation of leading Russian specialists in the field of neural interfaces, robotics, artificial organs and systems.
The main goals of the 2045 Initiative: the creation and realization of a new strategy for the development of humanity which meets global civilization challenges; the creation of optimale conditions promoting the spiritual enlightenment of humanity; and the realization of a new futuristic reality based on 5 principles: high spirituality, high culture, high ethics, high science and high technologies.
The main science mega-project of the 2045 Initiative aims to create technologies enabling the transfer of a individual’s personality to a more advanced non-biological carrier, and extending life, including to the point of immortality. We devote particular attention to enabling the fullest possible dialogue between the world’s major spiritual traditions, science and society.
A large-scale transformation of humanity, comparable to some of the major spiritual and sci-tech revolutions in history, will require a new strategy. We believe this to be necessary to overcome existing crises, which threaten our planetary habitat and the continued existence of humanity as a species. With the 2045 Initiative, we hope to realize a new strategy for humanity's development, and in so doing, create a more productive, fulfilling, and satisfying future.
The "2045" team is working towards creating an international research center where leading scientists will be engaged in research and development in the fields of anthropomorphic robotics, living systems modeling and brain and consciousness modeling with the goal of transferring one’s individual consciousness to an artificial carrier and achieving cybernetic immortality.
An annual congress "The Global Future 2045" is organized by the Initiative to give platform for discussing mankind's evolutionary strategy based on technologies of cybernetic immortality as well as the possible impact of such technologies on global society, politics and economies of the future.
Future prospects of "2045" Initiative for society
2015-2020
The emergence and widespread use of affordable android "avatars" controlled by a "brain-computer" interface. Coupled with related technologies “avatars’ will give people a number of new features: ability to work in dangerous environments, perform rescue operations, travel in extreme situations etc.
Avatar components will be used in medicine for the rehabilitation of fully or partially disabled patients giving them prosthetic limbs or recover lost senses.
2020-2025
Creation of an autonomous life-support system for the human brain linked to a robot, ‘avatar’, will save people whose body is completely worn out or irreversibly damaged. Any patient with an intact brain will be able to return to a fully functioning bodily life. Such technologies will greatly enlarge the possibility of hybrid bio-electronic devices, thus creating a new IT revolution and will make all kinds of superimpositions of electronic and biological systems possible.
2030-2035
Creation of a computer model of the brain and human consciousness with the subsequent development of means to transfer individual consciousness onto an artificial carrier. This development will profoundly change the world, it will not only give everyone the possibility of cybernetic immortality but will also create a friendly artificial intelligence, expand human capabilities and provide opportunities for ordinary people to restore or modify their own brain multiple times. The final result at this stage can be a real revolution in the understanding of human nature that will completely change the human and technical prospects for humanity.
2045
This is the time when substance-independent minds will receive new bodies with capacities far exceeding those of ordinary humans. A new era for humanity will arrive! Changes will occur in all spheres of human activity – energy generation, transportation, politics, medicine, psychology, sciences, and so on.
Today it is hard to imagine a future when bodies consisting of nanorobots will become affordable and capable of taking any form. It is also hard to imagine body holograms featuring controlled matter. One thing is clear however: humanity, for the first time in its history, will make a fully managed evolutionary transition and eventually become a new species. Moreover, prerequisites for a large-scale expansion into outer space will be created as well.
Key elements of the project in the future
• International social movement
• social network immortal.me
• charitable foundation "Global Future 2045" (Foundation 2045)
• scientific research centre "Immortality"
• business incubator
• University of "Immortality"
• annual award for contribution to the realization of the project of "Immortality”.