/ News
New Tactile Sensor Is Lighter Than A Feather
Researchers at the Someya-Sekitani Lab in Japan have engineered tactile sensors that can be bent, twisted, crumpled, submerged in liquid, stretched, and more--and they're lighter than a feather. Tactile sensors pick up on touch, force, or pressure--think of the way your car responds when you step on the brake, or (a more complex version) your touchscreen phone--but most existing sensors are silicon-based and therefore bulky. The latest innovation could lead to better and cheaper medical instruments and new health monitoring systems. It could also, eventually, advance consumer electronics, displays, and robotics, the researchers say.
The paper was published in Nature, and the researchers are from University of Tokyo, Johannes Kepler University, and University of Texas at Dallas. Their tactile sensor is made of organic transistors, which use a carbon-based semiconductor as well as an aluminum oxide and self-assembled monolayer dielectric. Jonathan Reeder, a University of Tokyo researcher on the project, explains that the electroplated aluminum oxide dielectric, which measures just under 20 nanometers, was one of the major accomplishments that allowed them to get the complete sensor so thin.
The transistors are deposited onto a special foil with a very rough surface. The foil is five times thinner than saran wrap, and even more compliant: its rough texture allows the circuitry to remain very secure in the "nanotized grooves and valleys," Reeder says, and allows the product to adhere to almost any surface.
Compression Of The Sensor: Stretching and compression hardly impact performance.
Many researchers are focusing on flexible electronics, but the ones coming out of Someya-Sekitani Lab are the thinnest and most flexible circuits to date, the researchers say. (They have aptly nicknamed their work "imperceptible electronics.") The sensors can conform to almost any 3-D shape. They're also resilient, the research team says: the sensors maintain functionality up to 170 degrees C (though beyond 100 degrees C their efficiency gradually tapers off); they're nearly unaffected when immersed in saline solutions; and they can be crumpled up, flattened back out, and even placed on rubber and stretched out--none of which drastically impacts performance.
The researchers envision several potential applications. In a medical setting, you could place the sensors on skin to monitor vital signs like temperature and heart rate. Eventually you could even place them inside the body on muscles or organs for either monitoring purposes or electrical stimulation (of muscles along the heart, for example). In technology, Reeder says the most promising applications are in wearable electronics. Let your imagination run wild for a moment: how cool would it be to have an imperceptible touch control panel on your sleeve for your phone or music player?
Someya-Sekitani Lab Team: The researchers are from University of Tokyo, Johannes Kepler University, and University of Texas at Dallas. Someya-Sekitani Lab
Source: http://www.popsci.com/technology/article/2013-07/new-crumple-able-electronic-circuit-lighter-feather
/ About us
Founded by Russian entrepreneur Dmitry Itskov in February 2011 with the participation of leading Russian specialists in the field of neural interfaces, robotics, artificial organs and systems.
The main goals of the 2045 Initiative: the creation and realization of a new strategy for the development of humanity which meets global civilization challenges; the creation of optimale conditions promoting the spiritual enlightenment of humanity; and the realization of a new futuristic reality based on 5 principles: high spirituality, high culture, high ethics, high science and high technologies.
The main science mega-project of the 2045 Initiative aims to create technologies enabling the transfer of a individual’s personality to a more advanced non-biological carrier, and extending life, including to the point of immortality. We devote particular attention to enabling the fullest possible dialogue between the world’s major spiritual traditions, science and society.
A large-scale transformation of humanity, comparable to some of the major spiritual and sci-tech revolutions in history, will require a new strategy. We believe this to be necessary to overcome existing crises, which threaten our planetary habitat and the continued existence of humanity as a species. With the 2045 Initiative, we hope to realize a new strategy for humanity's development, and in so doing, create a more productive, fulfilling, and satisfying future.
The "2045" team is working towards creating an international research center where leading scientists will be engaged in research and development in the fields of anthropomorphic robotics, living systems modeling and brain and consciousness modeling with the goal of transferring one’s individual consciousness to an artificial carrier and achieving cybernetic immortality.
An annual congress "The Global Future 2045" is organized by the Initiative to give platform for discussing mankind's evolutionary strategy based on technologies of cybernetic immortality as well as the possible impact of such technologies on global society, politics and economies of the future.
Future prospects of "2045" Initiative for society
2015-2020
The emergence and widespread use of affordable android "avatars" controlled by a "brain-computer" interface. Coupled with related technologies “avatars’ will give people a number of new features: ability to work in dangerous environments, perform rescue operations, travel in extreme situations etc.
Avatar components will be used in medicine for the rehabilitation of fully or partially disabled patients giving them prosthetic limbs or recover lost senses.
2020-2025
Creation of an autonomous life-support system for the human brain linked to a robot, ‘avatar’, will save people whose body is completely worn out or irreversibly damaged. Any patient with an intact brain will be able to return to a fully functioning bodily life. Such technologies will greatly enlarge the possibility of hybrid bio-electronic devices, thus creating a new IT revolution and will make all kinds of superimpositions of electronic and biological systems possible.
2030-2035
Creation of a computer model of the brain and human consciousness with the subsequent development of means to transfer individual consciousness onto an artificial carrier. This development will profoundly change the world, it will not only give everyone the possibility of cybernetic immortality but will also create a friendly artificial intelligence, expand human capabilities and provide opportunities for ordinary people to restore or modify their own brain multiple times. The final result at this stage can be a real revolution in the understanding of human nature that will completely change the human and technical prospects for humanity.
2045
This is the time when substance-independent minds will receive new bodies with capacities far exceeding those of ordinary humans. A new era for humanity will arrive! Changes will occur in all spheres of human activity – energy generation, transportation, politics, medicine, psychology, sciences, and so on.
Today it is hard to imagine a future when bodies consisting of nanorobots will become affordable and capable of taking any form. It is also hard to imagine body holograms featuring controlled matter. One thing is clear however: humanity, for the first time in its history, will make a fully managed evolutionary transition and eventually become a new species. Moreover, prerequisites for a large-scale expansion into outer space will be created as well.
Key elements of the project in the future
• International social movement
• social network immortal.me
• charitable foundation "Global Future 2045" (Foundation 2045)
• scientific research centre "Immortality"
• business incubator
• University of "Immortality"
• annual award for contribution to the realization of the project of "Immortality”.