/ News

07.08.2013

Neuromorphic chips could help reverse-engineer the human brain

Researchers at the University of Zurich and ETH Zurich have designed a sophisticated computer system that is comparable in size, speed and energy consumption to the human brain. Based on the development of neuromorphic microchips that mimic the properties of biological neurons, the research is seen as an important step in understanding how the human brain processes information and opens the door to fast, extremely low-power electronic systems that can assimilate sensory input and perform user-defined tasks in real time.

Neuromorphic engineering


The human brain is a remarkable machine: with a power consumption of only about 20 W, it can outclass the fastest supercomputer in most real-world tasks – particularly those involving the processing of sensory input. Researchers believe that the brain's astounding abilities aren't down to mere processing speed, but rather to the highly efficient way in which it elaborates information.

Though we lack the tools to fully investigate the brain's "computing architecture," we know that unlike your standard CPU the brain uses amixture of analog and digital signals at the same time; that information is processed on a massively parallel scale at relatively slow speeds; that memory and instruction signals are often seamlessly combined; and that continuous adaptation and self-organization of its neural networks play a crucial part in its function.

Established in the late 1980s, neuromorphic engineering is an interdisciplinary amalgam of neuroscience, biology, computer science and a number of other fields that attempts first to understand how the brain manipulates information, and then to replicate the same processes on a computer chip. The goal is the development of new, powerful computing architectures that could be used to model the brain and, perhaps, even serve as a stepping stone to a sophisticated, human-like artificial intelligence.

Most attempts at replicating a human brain involve simulating a very large number of neurons on a supercomputer; the neuromorphic approach, however, is quite different because it involves developing custom electronic circuits that simulate the neuron firing mechanisms in the actual brain and are similar to the brain in terms of size, speed and energy consumption.

"The neurons implemented with our approach have programmable time constants," Prof. Giacomo Indiveri, who led the research efforts, told Gizmag. "They can go as slow as real neurons or they can go significantly faster (e.g. >1000 times), but we slow them down to realistic time scales to be able to have systems that can interact with the environment and the user efficiently."

The silicon neurons, Indiveri told us, are comparable in size to actual neurons and they consume very little power. Compared to the supercomputer approach, their system consumes approximately 200,000 times less energy – only a few picojoules per spike.

A neuromorphic chip uses its most basic components in a radically different way than your standard CPU. Transistors, which are normally used as an on/off switch, here can also be used as an analog dial. The end result is that neuromorphic chips require far fewer transistors than the standard, all-digital approach. Neuromorphic chips also implement mechanisms that can easily modify synapses as data is processed, simulating the brain's neuroplasticity.

Soft state machines


Promising as they may be, neuromorphic neurons have proven difficult to organize in cooperative networks to perform a user-defined task. The Zurich researchers have now solved this problem by developing a sort of elementary structure – what they called a "soft state machine" (SSM) – that can be used to describe and implement complex behaviors in a neuromorphic system.

In computer science, a finite state machine (FSM) is a mathematical model similar to a flowchart that can be used to design computer programs and logic circuits. FSMs can implement context-dependent decision-making, "if-A-then-do-B" clauses, and use a short-term memory of sorts.

SSMs are neuronal state machines similar to FSMs that combine analog and digital signal processing. As such, they can be used to describe a complex behavior in a neuromorphic chip. The behavior can be first described in terms of a standard finite state machine, and then automatically translated into a SSM that can be implemented on a neuromorphic chip.

A smarter silicon retina

The researchers tested their findings on an advanced electronic camera known as silicon retina with a visual-processing-based task inspired by those used to evaluate the cognitive abilities of human subjects.

"The subject (our neuromorphic system in our case) is presented with a cue at the beginning of the experiment which specifies the rule to use for the task," Indiveri explained. "The subject is required to look at a screen in which a horizontal bar and a vertical bar are moving, and depending on the initial cue, the subject is supposed to report if and when a vertical bar crosses the middle of the screen from left to right, or if a horizontal bar crosses it from right to left."

Aside from real-time visual processing, the task also requires memory and context-dependent decision making, elements that are commonly accepted as signs of cognition. Interestingly, the neural structures that form as this visual test is performed has shown a remarkable similarity with neural structures in the mammalian brain.

"The recurrent neural circuits implemented in the system have the same type of connectivity patterns found in the visual cortex of the cat," says Indiveri. "In particular, they implement soft winner-take-all circuits that are based on descriptions of canonical microcircuits found in the visual cortex."

Applications

This work sheds light on how the neural networks in the brain implement the higher cognitive functions, and offers some valuable insights as to how future neuromorphic chips could go about increasing performance even further.

"One of the goals of our work, and neuromorphic engineering in general, is to use this technology as a medium for understanding the principles that underlie neural computation. So my hope is that our work can contribute to the task of reverse engineering the way a brain works," says Indiveri.

In the more immediate future, the researchers will combine the chips with several sensory components at once, such as an artificial cochlea or retina, to create complex cognitive systems that interact with their surroundings on multiple levels, all in real time.

A paper detailing the team's work was published on the journal Proceedings of the National Academy of Sciences.

Source: http://www.gizmag.com/neuromorphic-chips/28586/?utm_source=Gizmag+Subscribers&utm_campaign=2706530767-UA-2235360-4&utm_medium=email&utm_term=0_65b67362bd-2706530767-90990333




/ About us

Founded by Russian entrepreneur Dmitry Itskov in February 2011 with the participation of leading Russian specialists in the field of neural interfaces, robotics, artificial organs and systems.

The main goals of the 2045 Initiative: the creation and realization of a new strategy for the development of humanity which meets global civilization challenges; the creation of optimale conditions promoting the spiritual enlightenment of humanity; and the realization of a new futuristic reality based on 5 principles: high spirituality, high culture, high ethics, high science and high technologies. 

The main science mega-project of the 2045 Initiative aims to create technologies enabling the transfer of a individual’s personality to a more advanced non-biological carrier, and extending life, including to the point of immortality. We devote particular attention to enabling the fullest possible dialogue between the world’s major spiritual traditions, science and society.

A large-scale transformation of humanity, comparable to some of the major spiritual and sci-tech revolutions in history, will require a new strategy. We believe this to be necessary to overcome existing crises, which threaten our planetary habitat and the continued existence of humanity as a species. With the 2045 Initiative, we hope to realize a new strategy for humanity's development, and in so doing, create a more productive, fulfilling, and satisfying future.

The "2045" team is working towards creating an international research center where leading scientists will be engaged in research and development in the fields of anthropomorphic robotics, living systems modeling and brain and consciousness modeling with the goal of transferring one’s individual consciousness to an artificial carrier and achieving cybernetic immortality.

An annual congress "The Global Future 2045" is organized by the Initiative to give platform for discussing mankind's evolutionary strategy based on technologies of cybernetic immortality as well as the possible impact of such technologies on global society, politics and economies of the future.

 

Future prospects of "2045" Initiative for society

2015-2020

The emergence and widespread use of affordable android "avatars" controlled by a "brain-computer" interface. Coupled with related technologies “avatars’ will give people a number of new features: ability to work in dangerous environments, perform rescue operations, travel in extreme situations etc.
Avatar components will be used in medicine for the rehabilitation of fully or partially disabled patients giving them prosthetic limbs or recover lost senses.

2020-2025

Creation of an autonomous life-support system for the human brain linked to a robot, ‘avatar’, will save people whose body is completely worn out or irreversibly damaged. Any patient with an intact brain will be able to return to a fully functioning  bodily life. Such technologies will  greatly enlarge  the possibility of hybrid bio-electronic devices, thus creating a new IT revolution and will make  all  kinds of superimpositions of electronic and biological systems possible.

2030-2035

Creation of a computer model of the brain and human consciousness  with the subsequent development of means to transfer individual consciousness  onto an artificial carrier. This development will profoundly change the world, it will not only give everyone the possibility of  cybernetic immortality but will also create a friendly artificial intelligence,  expand human capabilities  and provide opportunities for ordinary people to restore or modify their own brain multiple times.  The final result  at this stage can be a real revolution in the understanding of human nature that will completely change the human and technical prospects for humanity.

2045

This is the time when substance-independent minds will receive new bodies with capacities far exceeding those of ordinary humans. A new era for humanity will arrive!  Changes will occur in all spheres of human activity – energy generation, transportation, politics, medicine, psychology, sciences, and so on.

Today it is hard to imagine a future when bodies consisting of nanorobots  will become affordable  and capable of taking any form. It is also hard to imagine body holograms featuring controlled matter. One thing is clear however:  humanity, for the first time in its history, will make a fully managed evolutionary transition and eventually become a new species. Moreover,  prerequisites for a large-scale  expansion into outer space will be created as well.

 

Key elements of the project in the future

• International social movement
• social network immortal.me
• charitable foundation "Global Future 2045" (Foundation 2045)
• scientific research centre "Immortality"
• business incubator
• University of "Immortality"
• annual award for contribution to the realization of  the project of "Immortality”.

Login as user:

If you are registered on one of these websites, you can get a quick registration. To do this, please select the wesite and follow the instructions.

Login to 2045.com

Email:
You do not have login to 2045.com? Register!
Dear colleagues, partners, friends! If you support ​the 2045 strategic social initiative goals and values, please register on our website.

Quick registration:

If you are registered on one of these websites, you can get a quick registration. To do this, please select the wesite and follow the instructions.

Registration

Name:
Surname:
Field of activity:
Email:
Password:
Enter the code shown:

Show another picture

Восстановить пароль

Email:

Text:
Contact Email:
Attachment ( not greater than 5 Mb. ):
 
Close
avatar project milestones