/ News
Artificial-intelligence research revives its old ambitions
A new interdisciplinary research center at MIT, funded by the National Science Foundation, aims at nothing less than unraveling the mystery of intelligence.
The birth of artificial-intelligence research as an autonomous discipline is generally thought to have been the monthlong Dartmouth Summer Research Project on Artificial Intelligence in 1956, which convened 10 leading electrical engineers — including MIT’s Marvin Minsky and Claude Shannon — to discuss “how to make machines use language” and “form abstractions and concepts.” A decade later, impressed by rapid advances in the design of digital computers, Minsky was emboldened to declare that “within a generation ... the problem of creating ‘artificial intelligence’ will substantially be solved.”
The problem, of course, turned out to be much more difficult than AI’s pioneers had imagined. In recent years, by exploiting machine learning — in which computers learn to perform tasks from sets of training examples — artificial-intelligence researchers have built special-purpose systems that can do things like interpret spoken language or play Jeopardy with great success. But according to Tomaso Poggio, the Eugene McDermott Professor of Brain Sciences and Human Behavior at MIT, “These recent achievements have, ironically, underscored the limitations of computer science and artificial intelligence. We do not yet understand how the brain gives rise to intelligence, nor do we know how to build machines that are as broadly intelligent as we are.”
Poggio thinks that AI research needs to revive its early ambitions. “It’s time to try again,” he says. “We know much more than we did before about biological brains and how they produce intelligent behavior. We’re now at the point where we can start applying that understanding from neuroscience, cognitive science and computer science to the design of intelligent machines.”
The National Science Foundation (NSF) appears to agree: Today, it announced that one of three new research centers funded through its Science and Technology Centers Integrative Partnerships program will be the Center for Brains, Minds and Machines (CBMM), based at MIT and headed by Poggio. Like all the centers funded through the program, CBMM will initially receive $25 million over five years.
Homegrown initiative
CBMM grew out of the MIT Intelligence Initiative, an interdisciplinary program aimed at understanding how intelligence arises in the human brain and how it could be replicated in machines.
“[MIT President] Rafael Reif, when he was provost, came to speak to the faculty and challenged us to come up with new visions, new ideas,” Poggio says. He and MIT’s Joshua Tenenbaum, also a professor in the Department of Brain and Cognitive Sciences (BCS) and a principal investigator in the Computer Science and Artificial Intelligence Laboratory, responded by proposing a program that would integrate research at BCS and the Department of Electrical Engineering and Computer Science. “With a system as complicated as the brain, there is a point where you need to get people to work together across different disciplines and techniques,” Poggio says. Funded by MIT’s School of Science, the initiative was formally launched, in 2011, at a symposium during MIT’s 150th anniversary.
Headquartered at MIT, CBMM will be, like all the NSF centers, a multi-institution collaboration. Of the 20 faculty members currently affiliated with the center, 10 are from MIT, five are from Harvard University, and the rest are from Cornell University, Rockefeller University, the University of California at Los Angeles, Stanford University and the Allen Institute for Brain Science. The center’s international partners are the Italian Institute of Technology; the Max Planck Institute in Germany; City University of Hong Kong; the National Centre for Biological Sciences in India; and Israel’s Weizmann Institute and Hebrew University. Its industrial partners are Google, Microsoft, IBM, Mobileye, Orcam, Boston Dynamics, Willow Garage, Deep Minds and Rethink Robotics. Also affiliated with center are Howard University; Hunter College; Universidad Central del Caribe, Puerto Rico; the University of Puerto Rico, Río Piedras; and Wellesley College.
CBMM aims to foster collaboration not just between institutions but also across disciplinary boundaries. Graduate students and postdocs funded through the center will have joint advisors, preferably drawn from different research areas.
Research themes
The center’s four main research themes are also intrinsically interdisciplinary. They are the integration of intelligence, including vision, language and motor skills; circuits for intelligence, which will span research in neurobiology and electrical engineering; the development of intelligence in children; and social intelligence. Poggio will also lead the development of a theoretical platform intended to undergird the work in all four areas.
“Those four thrusts really do fit together, in the sense that they cover what we think are the biggest challenges facing us when we try to develop a computational understanding of what intelligence is all about,” says Patrick Winston, the Ford Foundation Professor of Engineering at MIT and research coordinator for CBMM.
For instance, he explains, in human cognition, vision, language and motor skills are inextricably linked, even though they’ve been treated as separate problems in most recent AI research. One of Winston’s favorite examples is that of image labeling: A human subject will identify an image of a man holding a glass to his lips as that of a man drinking. If the man is holding the glass a few inches further forward, it’s an instance of a different activity — toasting. But a human will also identify an image of a cat turning its head up to catch a few drops of water from a faucet as an instance of drinking. “You have to be thinking about what you see there as a story,” Winston says. “They get the same label because it’s the same story, not because it looks the same.”
Similarly, Winston explains, development is its own research thrust because intelligence is fundamentally shaped through interaction with the environment. There’s evidence, Winston says, that mammals that receive inadequate visual stimulation in the first few weeks of life never develop functional eyesight, even though their eyes are otherwise unimpaired. “You need to stimulate the neural mechanisms in order for them to assemble themselves into a functioning system,” Winston says. “We think that that’s true generally, of our entire spectrum of capabilities. You need to have language, you need to see things, you need to have language and vision work together from the beginning to ensure that the parts develop properly to form a working whole.”
Source: http://web.mit.edu/newsoffice/2013/center-for-brains-minds-and-machines-0909.html
/ About us
Founded by Russian entrepreneur Dmitry Itskov in February 2011 with the participation of leading Russian specialists in the field of neural interfaces, robotics, artificial organs and systems.
The main goals of the 2045 Initiative: the creation and realization of a new strategy for the development of humanity which meets global civilization challenges; the creation of optimale conditions promoting the spiritual enlightenment of humanity; and the realization of a new futuristic reality based on 5 principles: high spirituality, high culture, high ethics, high science and high technologies.
The main science mega-project of the 2045 Initiative aims to create technologies enabling the transfer of a individual’s personality to a more advanced non-biological carrier, and extending life, including to the point of immortality. We devote particular attention to enabling the fullest possible dialogue between the world’s major spiritual traditions, science and society.
A large-scale transformation of humanity, comparable to some of the major spiritual and sci-tech revolutions in history, will require a new strategy. We believe this to be necessary to overcome existing crises, which threaten our planetary habitat and the continued existence of humanity as a species. With the 2045 Initiative, we hope to realize a new strategy for humanity's development, and in so doing, create a more productive, fulfilling, and satisfying future.
The "2045" team is working towards creating an international research center where leading scientists will be engaged in research and development in the fields of anthropomorphic robotics, living systems modeling and brain and consciousness modeling with the goal of transferring one’s individual consciousness to an artificial carrier and achieving cybernetic immortality.
An annual congress "The Global Future 2045" is organized by the Initiative to give platform for discussing mankind's evolutionary strategy based on technologies of cybernetic immortality as well as the possible impact of such technologies on global society, politics and economies of the future.
Future prospects of "2045" Initiative for society
2015-2020
The emergence and widespread use of affordable android "avatars" controlled by a "brain-computer" interface. Coupled with related technologies “avatars’ will give people a number of new features: ability to work in dangerous environments, perform rescue operations, travel in extreme situations etc.
Avatar components will be used in medicine for the rehabilitation of fully or partially disabled patients giving them prosthetic limbs or recover lost senses.
2020-2025
Creation of an autonomous life-support system for the human brain linked to a robot, ‘avatar’, will save people whose body is completely worn out or irreversibly damaged. Any patient with an intact brain will be able to return to a fully functioning bodily life. Such technologies will greatly enlarge the possibility of hybrid bio-electronic devices, thus creating a new IT revolution and will make all kinds of superimpositions of electronic and biological systems possible.
2030-2035
Creation of a computer model of the brain and human consciousness with the subsequent development of means to transfer individual consciousness onto an artificial carrier. This development will profoundly change the world, it will not only give everyone the possibility of cybernetic immortality but will also create a friendly artificial intelligence, expand human capabilities and provide opportunities for ordinary people to restore or modify their own brain multiple times. The final result at this stage can be a real revolution in the understanding of human nature that will completely change the human and technical prospects for humanity.
2045
This is the time when substance-independent minds will receive new bodies with capacities far exceeding those of ordinary humans. A new era for humanity will arrive! Changes will occur in all spheres of human activity – energy generation, transportation, politics, medicine, psychology, sciences, and so on.
Today it is hard to imagine a future when bodies consisting of nanorobots will become affordable and capable of taking any form. It is also hard to imagine body holograms featuring controlled matter. One thing is clear however: humanity, for the first time in its history, will make a fully managed evolutionary transition and eventually become a new species. Moreover, prerequisites for a large-scale expansion into outer space will be created as well.
Key elements of the project in the future
• International social movement
• social network immortal.me
• charitable foundation "Global Future 2045" (Foundation 2045)
• scientific research centre "Immortality"
• business incubator
• University of "Immortality"
• annual award for contribution to the realization of the project of "Immortality”.