/ News

18.10.2013

How IBM is making computers more like your brain. For real

Big Blue is using the human brain as a template for breakthrough designs. Brace yourself for a supercomputer that's cooled and powered by electronic blood and small enough to fit in a backpack.

ZURICH, Switzerland -- Despite a strong philosophical connection, computers and brains inhabit separate realms in research. IBM, though, believes the time is ripe to bring them together.

Through research projects expected to take a decade, Big Blue is using biological and manufactured forms of computing to learn about the other.

IBM Research is working on "interlayer cooling," in which water is pumped through tiny tubes penetrating chips are piggypacked using high-speed communication technology called through-silicon vias. IBM's approach is designed to deal with overheating problems that otherwise severely limit chip stacking. The protruding pipe fittings are for connecting water-cooling tubes.

(Credit: Stephen Shankland/CNET)

On the computing side, IBM is using the brain as a template for breakthrough designs such as the idea of using fluids both to cool the machine and to distribute electrical power. That could enable processing power that's densely packed into 3D volumes rather than spread out across flat 2D circuit boards with slow communication links.

And on the brain side, IBM is supplying computing equipment to a $1.3 billion European effort called the Human Brain Project. It uses computers to simulate the actual workings of an entire brain -- a mouse's first, then a human's -- all the way down to the biochemical level of the neuron. Researchers will be able to tweak parameters as the simulation is running to try to figure out core mechanisms for conditions like Alzheimer's disease, schizophrenia, and autism.

It's all part of what IBM calls the cognitive systems era, in which computers aren't just programmed, but also perceive what's going on, make judgments, communicate with natural language, and learn from experience. It's a close cousin to that decades-old dream of artificial intelligence.

"If we want to make an impact in the cognitive systems era, we need to understand how the brain works," said Matthias Kaiserswerth, a computer scientist who's director of IBM Research in Zurich, speaking during a media tour of the labs on Wednesday.

One key challenge driving IBM's work is matching the brain's power consumption. Over millions of years, nature has evolved a remarkably efficient information-processing design, said Alessandro Curioni, manager of IBM Research's computational sciences department. The ability to process the subtleties of human language helped IBM's Watson supercomputer win at "Jeopardy." That was a high-profile step on the road to cognitive computing, but from a practical perspective, it also showed how much farther computing has to go.

"Watson used 85 kilowatts," Kaiserwerth said. "That's a lot of power. The human brain uses 20 watts."

Bruno Michel describes Aquasar, an IBM Research prototype high-performance computing machine that uses unusually high-temperature liquid cooling. (Credit: Stephen Shankland/CNET)

Dense 3D computing
The shift in IBM's computing research shows in the units the company uses to measure progress. For decades, the yardstick of choice for gauging computer performance has been operations per second -- the rate at which the machine can perform mathematical calculations, for example.

When energy constraints became a problem, meaning that computers required prohibitive amounts of electrical power and threw off problematic amounts of waste heat, a new measurement arrived: operations per joule of energy. That gauges a computer's energy efficiency.

Now IBM has a new yardstick: operations per liter. The company is judging success by how much data-processing ability it can squeeze into a given volume. Today's computers must be laid out on flat circuit boards that ensure plenty of contact with air that cools the chips.

"In a computer, processors occupy one-millionth of the volume. In a brain, it's 40 percent. Our brain is a volumetric, dense, object," said Bruno Michel, a researcher in advanced thermal packaging for IBM Research, who got his Ph.D in biophysics.

What's the problem with sprawl? In short, communication links between processing elements can't keep up with data-transfer demands, and they consume too much power as well, Michel said.

The fix is to stack chips into dense 3D configurations, with chips linked using a technology called through-silicon vias (TSVs). That's impossible today because stacking even two chips means crippling overheating problems. But IBM believes it's got an answer to the cooling problem: a branching network of liquid cooling channels that funnel fluid into ever-smaller tubes.

The liquid passes not next to the chip, but through it, drawing away heat in the thousandth of a second it takes to make the trip, Michel said. The company has demonstrated the approach in an efficient prototype system called Aquasar. (Get ready for another new yardstick: greenhouse gas emissions. Aquasar can perform 7.9 trillion operations per second per gram of carbon dioxide released into the atmosphere.)

IBM can deliver up to 1 watt of power per square centimeter with this technology called a flow battery, which transports electrical power stored chemically. Here, vanadium electrolytes power a microfluidics chip in a lab demonstration. Ultimately IBM hopes to use liquids both to cool and power computers. (Credit: Stephen Shankland/CNET)

Liquid-based flow battery
But that's not all the liquid will do. IBM also is developing a system called a redox flow battery that also uses it to distribute power instead of using wires. Two liquids called electrolytes, each with oppositely charged electrical ions, circulate through the system to distribute power. Think of it as a liquid battery interlaced through the interstices of the machine.

"We are going to provide cooling and power with a fluid," Michel said. "That's how our brain does it."

The electrolytes, vanadium-based at present, travel through ever-smaller tubes, said Patrick Ruch, another IBM researcher working on the effort. At the smallest, they're about 100 microns wide, about the width of a human hair, at which point they hand off their power to conventional electrical wires. Flow batteries can produce between 0.5 and 3 volts, and that in turn means IBM can use the technology today to supply 1 watt of power for every square centimeter of a computer's circuit board.

Liquid cooling has been around for decades in the computing industry, but most data centers avoid it given its expense and complexity. It's possible the redox battery could provide a new incentive to embrace it, though.

Michel estimates the liquid power technology will take 10 to 15 years to develop, but when it works, it'll mean supercomputers that fit into something the size of a backpack, not a basketball court.

"A 1-petaflop computer in 10 liters -- that's our goal," Michel said.

Performing at 1 petaflop means a computer can complete a quadrillion floating-point mathematical operations per second. Today's top supercomputer clocked in at 33.86 petaflops, but it uses 32,000 Xeon processors and 48,000 Xeon Phi accelerator processors.

Matthias Kaiserswerth, director of IBM Research in Zurich, is working toward the era of "cognitive computing," in which machines get attributes of human thinking such as perception, learning, and judgment. (Credit: Stephen Shankland/CNET)

How to build a brain
More conventional supercomputers have been used so far for IBM's collaborations in brain research. The highlight of that work so far has been the Blue Brain project, which is on its thirdIBM Blue Gene supercomputer at the Ecole Polytechnique Federale de Lausanne, or EPFL, in Lausanne, Switzerland. The Blue Brain and Human Brain Project will take a new step with aBlue Gene/Q augmented by 128 terabytes of flash memory at the Swiss National Supercomputing Center in Lugano, Switzerland. It'll be used to simulate the formation and inner workings of an entire mouse brain, which has about 70 million neurons.

The eventual human brain simulation will take place at the Juelich Supercomputing Center in northern Germany, Curioni said. It's planned to be an "exascale" machine -- one that performs 1 exaflops, or quintillion floating-point operations per second.

The project doesn't lack for ambition. One of its driving forces is co-director Henry Markram of EPFL, who has worked on the Blue Brain project for years and sees computing as the way to understand the true workings of the human brain.

"It's impossible to experimentally map the brain," simply because it's too complicated, Markram said. There are too many neurons overall, 55 different varieties of neuron, and 3,000 ways they can interconnect. That complexity is multiplied by differences that appear with 600 different diseases, genetic variation from one person to the next, and changes that go along with the age and sex of humans.

"If you can't experimentally map the brain, you have to predict it -- the numbers of neurons, the types, where the proteins are located, how they'll interact," Markram said. "We have to develop an entirely new science where we predict most of the stuff that cannot be measured."

Liquid cooling has traditionally meant water traveling near chips, the hottest part of computers, but IBM Research has begun making chips with cooling conduits built directly in. (Credit: Stephen Shankland/CNET)

With the Human Brain Project, researchers will use supercomputers to reproduce how brains form -- basically, growing them in an virtual vat -- then seeing how they respond to input signals from simulated senses and nervous system.

The idea isn't to reproduce every last thing about the brain, but rather a model based on the understanding so far. If it works, actual brain behavior should emerge from the fundamental framework inside the computer, and where it doesn't work, scientists will know where their knowledge falls short.

"We take these rules and algorithmically reconstruct a model of the brain," Markram said. "We'll say this is biological prediction, then we can go back to the experiments and we can verify if the model is right. We celebrate when the model is wrong, because that's when it points to where we need more data or we don't understand the rules."

The result, if the work is successful, will be not just a better understanding of the brain, but better cooperation among brain researchers and medical experts. That could reverse recent declines in the development of new drugs to treat neural problems, he said.

And understanding the brain could usher in the era of "neuromorphic computing."

"Any new rules, circuits, or understanding of how the brain works will allow us to design neuromorphic machines that are much more powerful in terms of cognitive power, energy efficiency, and packaging," Curioni said.

And that, in turn, could lead to profoundly more capable computers. For starters, IBM has four markets in mind: machines that could find the best places to invest money, bring new depth and accuracy to medical diagnoses, research the appropriate legal precedents in court cases, or give people help when they dial a call center.

But it's not hard to imagine that's only the beginning. When computers can learn for themselves and program themselves, it's clear the divide separating biological and artificial computing will be a lot narrower.

IBM Research investigates supercomputing, nanotechnology, medicine, and more at its Zurich labs. (Credit: Stephen Shankland/CNET)

Source: http://news.cnet.com/8301-11386_3-57607926-76/how-ibm-is-making-computers-more-like-your-brain-for-real/




/ About us

Founded by Russian entrepreneur Dmitry Itskov in February 2011 with the participation of leading Russian specialists in the field of neural interfaces, robotics, artificial organs and systems.

The main goals of the 2045 Initiative: the creation and realization of a new strategy for the development of humanity which meets global civilization challenges; the creation of optimale conditions promoting the spiritual enlightenment of humanity; and the realization of a new futuristic reality based on 5 principles: high spirituality, high culture, high ethics, high science and high technologies. 

The main science mega-project of the 2045 Initiative aims to create technologies enabling the transfer of a individual’s personality to a more advanced non-biological carrier, and extending life, including to the point of immortality. We devote particular attention to enabling the fullest possible dialogue between the world’s major spiritual traditions, science and society.

A large-scale transformation of humanity, comparable to some of the major spiritual and sci-tech revolutions in history, will require a new strategy. We believe this to be necessary to overcome existing crises, which threaten our planetary habitat and the continued existence of humanity as a species. With the 2045 Initiative, we hope to realize a new strategy for humanity's development, and in so doing, create a more productive, fulfilling, and satisfying future.

The "2045" team is working towards creating an international research center where leading scientists will be engaged in research and development in the fields of anthropomorphic robotics, living systems modeling and brain and consciousness modeling with the goal of transferring one’s individual consciousness to an artificial carrier and achieving cybernetic immortality.

An annual congress "The Global Future 2045" is organized by the Initiative to give platform for discussing mankind's evolutionary strategy based on technologies of cybernetic immortality as well as the possible impact of such technologies on global society, politics and economies of the future.

 

Future prospects of "2045" Initiative for society

2015-2020

The emergence and widespread use of affordable android "avatars" controlled by a "brain-computer" interface. Coupled with related technologies “avatars’ will give people a number of new features: ability to work in dangerous environments, perform rescue operations, travel in extreme situations etc.
Avatar components will be used in medicine for the rehabilitation of fully or partially disabled patients giving them prosthetic limbs or recover lost senses.

2020-2025

Creation of an autonomous life-support system for the human brain linked to a robot, ‘avatar’, will save people whose body is completely worn out or irreversibly damaged. Any patient with an intact brain will be able to return to a fully functioning  bodily life. Such technologies will  greatly enlarge  the possibility of hybrid bio-electronic devices, thus creating a new IT revolution and will make  all  kinds of superimpositions of electronic and biological systems possible.

2030-2035

Creation of a computer model of the brain and human consciousness  with the subsequent development of means to transfer individual consciousness  onto an artificial carrier. This development will profoundly change the world, it will not only give everyone the possibility of  cybernetic immortality but will also create a friendly artificial intelligence,  expand human capabilities  and provide opportunities for ordinary people to restore or modify their own brain multiple times.  The final result  at this stage can be a real revolution in the understanding of human nature that will completely change the human and technical prospects for humanity.

2045

This is the time when substance-independent minds will receive new bodies with capacities far exceeding those of ordinary humans. A new era for humanity will arrive!  Changes will occur in all spheres of human activity – energy generation, transportation, politics, medicine, psychology, sciences, and so on.

Today it is hard to imagine a future when bodies consisting of nanorobots  will become affordable  and capable of taking any form. It is also hard to imagine body holograms featuring controlled matter. One thing is clear however:  humanity, for the first time in its history, will make a fully managed evolutionary transition and eventually become a new species. Moreover,  prerequisites for a large-scale  expansion into outer space will be created as well.

 

Key elements of the project in the future

• International social movement
• social network immortal.me
• charitable foundation "Global Future 2045" (Foundation 2045)
• scientific research centre "Immortality"
• business incubator
• University of "Immortality"
• annual award for contribution to the realization of  the project of "Immortality”.

Login as user:

If you are registered on one of these websites, you can get a quick registration. To do this, please select the wesite and follow the instructions.

Login to 2045.com

Email:
You do not have login to 2045.com? Register!
Dear colleagues, partners, friends! If you support ​the 2045 strategic social initiative goals and values, please register on our website.

Quick registration:

If you are registered on one of these websites, you can get a quick registration. To do this, please select the wesite and follow the instructions.

Registration

Name:
Surname:
Field of activity:
Email:
Password:
Enter the code shown:

Show another picture

Восстановить пароль

Email:

Text:
Contact Email:
Attachment ( not greater than 5 Mb. ):
 
Close
avatar project milestones