/ News
Painting robot lends surgeons a hand
Would you let an artist perform life-saving surgery on you? You might someday, if the artist is a painting robot.
Timothy Lee built a robotic painting arm that can replicate the lines and shapes a surgeon makes with a scalpel using a paintbrush and canvas. His invention, a creative blend of art and science, could one day lend doctors a hand in practicing complex, robot-assisted surgeries without having to step foot in an operating room.
Rethinking robotics
Lee, a sophomore who plans to major in chemistry, spent his high school years building everything from a robot that can balance on a beam to a robotic arm that can throw a ball. During his first year at Wake Forest, he heard about a percussion-playing robot designed by Georgia Tech researchers and started thinking about new ways to apply his hobby.
"I never really thought you could do music with robots," he said. "That got me thinking, 'What else can you do with robots that most people wouldn't think about or imagine happening?' I thought I could do something with painting and that prompted the idea of robotic surgery."
Lee said painting and surgery have more in common than initially meets the eye. A painter has to be nimble and precise with his brushstrokes much like a surgeon must be nimble and precise with a scalpel.
"When you are dissecting a part of the human body, you have to be one hundred percent perfect," he said. "If you think about painting something like the Mona Lisa, you have to be perfect with your brush."
With the support of a grant from the Undergraduate Research and Creative Activities (URECA) Center, Lee teamed up with Craig Hamilton, an associate professor of biomedical engineering at Wake Forest Baptist Medical Center, and got to work on his mechanical arm.
More than painting by numbers
Lee ordered parts online and assembled his contraption. His invention took an artistic turn when he began the arduous process of teaching it how to paint.
"It is a lot harder than you might think," Lee said. "At first I'd tell it to go five spaces to the left or five spaces to the right and things typically wouldn't go as planned. After weeks of programming, I eventually got to the point where the robot could paint shapes and lines in a particular color."
Lee said from there it was relatively easy to train the robot to paint something like a sunset or a house without any input from a human operator. Lee next began to teach the robot to paint lines and shapes corresponding to locations of human organs.
"Our goal was to get the robot to replicate the lines and shapes a surgeon makes with a scalpel all on its own," he said. "You can think of a painting canvas as a body and the brush as a surgeon's knife."
Practicing in a surgeon's studio
Currently, surgical robots are controlled by a human operator and do not perform procedures autonomously. While Lee's robot may never be put to work in an operating room, it and other robots like it could one day help researchers to design fully autonomous robotic surgeons.
In addition to teaching the robot to paint autonomously, Lee also explored the idea of using his robot as a training tool for surgeons who need practice operating a da Vinci surgical arm.
"At the Wake Forest Medical Center, doctors use replica bodies to help train surgeons to use the da Vinci system," Lee said. "These replicas are pretty expensive compared to my robotic arm, which cost around $1,500."
This April, Lee will represent Wake Forest at the ACC Meeting of the Minds, an event where outstanding undergraduate researchers from each ACC university gather at one member university to present their research, either verbally or as a poster. This year the event will take place at the University of Pittsburgh, where Lee will demonstrate his robot's painting abilities.
"Working with Dr. Hamilton on my robot has been a great opportunity and there are definitely still a lot of things we can still learn from it," Lee said. "It just goes to show you that science and art are more intertwined than most people think."
Source: http://phys.org/news/2014-02-robot-surgeons.html
/ About us
Founded by Russian entrepreneur Dmitry Itskov in February 2011 with the participation of leading Russian specialists in the field of neural interfaces, robotics, artificial organs and systems.
The main goals of the 2045 Initiative: the creation and realization of a new strategy for the development of humanity which meets global civilization challenges; the creation of optimale conditions promoting the spiritual enlightenment of humanity; and the realization of a new futuristic reality based on 5 principles: high spirituality, high culture, high ethics, high science and high technologies.
The main science mega-project of the 2045 Initiative aims to create technologies enabling the transfer of a individual’s personality to a more advanced non-biological carrier, and extending life, including to the point of immortality. We devote particular attention to enabling the fullest possible dialogue between the world’s major spiritual traditions, science and society.
A large-scale transformation of humanity, comparable to some of the major spiritual and sci-tech revolutions in history, will require a new strategy. We believe this to be necessary to overcome existing crises, which threaten our planetary habitat and the continued existence of humanity as a species. With the 2045 Initiative, we hope to realize a new strategy for humanity's development, and in so doing, create a more productive, fulfilling, and satisfying future.
The "2045" team is working towards creating an international research center where leading scientists will be engaged in research and development in the fields of anthropomorphic robotics, living systems modeling and brain and consciousness modeling with the goal of transferring one’s individual consciousness to an artificial carrier and achieving cybernetic immortality.
An annual congress "The Global Future 2045" is organized by the Initiative to give platform for discussing mankind's evolutionary strategy based on technologies of cybernetic immortality as well as the possible impact of such technologies on global society, politics and economies of the future.
Future prospects of "2045" Initiative for society
2015-2020
The emergence and widespread use of affordable android "avatars" controlled by a "brain-computer" interface. Coupled with related technologies “avatars’ will give people a number of new features: ability to work in dangerous environments, perform rescue operations, travel in extreme situations etc.
Avatar components will be used in medicine for the rehabilitation of fully or partially disabled patients giving them prosthetic limbs or recover lost senses.
2020-2025
Creation of an autonomous life-support system for the human brain linked to a robot, ‘avatar’, will save people whose body is completely worn out or irreversibly damaged. Any patient with an intact brain will be able to return to a fully functioning bodily life. Such technologies will greatly enlarge the possibility of hybrid bio-electronic devices, thus creating a new IT revolution and will make all kinds of superimpositions of electronic and biological systems possible.
2030-2035
Creation of a computer model of the brain and human consciousness with the subsequent development of means to transfer individual consciousness onto an artificial carrier. This development will profoundly change the world, it will not only give everyone the possibility of cybernetic immortality but will also create a friendly artificial intelligence, expand human capabilities and provide opportunities for ordinary people to restore or modify their own brain multiple times. The final result at this stage can be a real revolution in the understanding of human nature that will completely change the human and technical prospects for humanity.
2045
This is the time when substance-independent minds will receive new bodies with capacities far exceeding those of ordinary humans. A new era for humanity will arrive! Changes will occur in all spheres of human activity – energy generation, transportation, politics, medicine, psychology, sciences, and so on.
Today it is hard to imagine a future when bodies consisting of nanorobots will become affordable and capable of taking any form. It is also hard to imagine body holograms featuring controlled matter. One thing is clear however: humanity, for the first time in its history, will make a fully managed evolutionary transition and eventually become a new species. Moreover, prerequisites for a large-scale expansion into outer space will be created as well.
Key elements of the project in the future
• International social movement
• social network immortal.me
• charitable foundation "Global Future 2045" (Foundation 2045)
• scientific research centre "Immortality"
• business incubator
• University of "Immortality"
• annual award for contribution to the realization of the project of "Immortality”.