/ News
Next-Gen Neural Prosthetics Require a New Materials Approach
Following up on the success of cochlear and retinal prostheses, neuroscientists see a limitless horizon for related devices that will read electrical and chemical signals from the nervous system to improve quality of life for people suffering from injury or disease.
Such devices, neural prosthetics, will help a wide range of people, including people with epilepsy, wounded war veterans suffering post-traumatic stress disorder and traumatic brain injury, people with treatment-resistant depression and chronic pain, victims of Alzheimer's disease, people with speech disabilities, and individuals who have sustained spinal cord injury and loss of limbs.
But before neural prosthetics can advance, engineers will need to design and fabricate devices that can survive in the harsh environment of the human body, without causing tissue infection and other serious adverse conditions. In addition to enhancing materials performance, researchers are developing interface technologies that enable micro-devices to safely reside in human tissue for long time periods.
Researchers at the U.S. Department of Energy's Lawrence Livermore National Laboratory (LLNL) are making gains with thin-film flexible-polymer materials. In experiments with auditory prosthetics, neural interface micro-electrodes are embedded in polymer, allowing the device to move naturally and conform to live tissue. The polymer materials have mechanical properties that more closely mimic neural tissue than the micro wires used in current cochlear and deep-brain-stimulating implants.
"Among the engineering challenges associated with neural prosthetics is the biocompatibility of the implant," said Sarah Felix, a lead research engineer at LLNL and also a member of ASME. "Research suggests that polymer is more compatible with the human body than the silicon in conventional neural probes used in neuroscience studies."
Toward reliability
Researchers believe conventional, rigid, neural devices cause micro tearing in human tissue because neural tissue is softer than the device. According to Felix, the flexibility of a thin-film polymer probe mitigates this problem. However, the flexibility also makes polymer devices difficult to implant. Felix's solution is to temporarily attach a rigid stiffener.
If you're a topical expert — researcher, business leader, author or innovator — and would like to contribute an op-ed piece, email us here.
View full size image
"For the polymer neural interfaces, we attach the device to a needle-like stiffener using bio-dissolvable polyethylene glycol (PEG) to enable extraction of the stiffener after surgical insertion," said Felix. "An innovative bonding process enables accurate alignment of the device to the stiffener."
A novel feature of the design is a shallow channel running lengthwise, which allows the even distribution of the PEG, or other bio-adhesive, during assembly and implantation. Felix's team used the method to implant unique, dual-sided, polymer electrode arrays into brain tissue, and these arrays successfully recorded neural signals.
A promising future
The LLNL researchers believe their devices and surgical methods can also apply to future applications in deep-brain- and spinal-cord-stimulation, which will enable physicians to advance neural prosthetics to the next level of human health and rehabilitation. In fact, LLNL is currently developing neural implants that will restore auditory, motor and bladder function; aid speech; and control depression and epilepsy.
Each year, the U.S. National Institutes of Health (NIH) spends $6.5 million on neural prosthetics research and development, and today several of the most prestigious medical-research institutions in the United States — Case Western University and the Massachusetts Institute of Technology among them — are engaged in promising clinical studies.
Many medical scientists believe the sky is the limit for neural prosthetics, but ultimately it is the engineering community that will need to design and fabricate devices that enable the realization of the promise of neural modulation for patients. [Eternal Sunshine of the Bionic Mind: Prosthesis Could Restore Memory]
Said Felix: "There exist many engineering considerations with neural prosthetics, particularly in the interface of the device with human tissue. Engineers must think about a complete range of issues, from electrode materials and the lifetime of the implant to electronics and signal processing. This will be an intriguing pathway of multidisciplinary scientific and engineering development for many years to come."
This article was adapted from "Advances in Materials Engineering Will Drive Next Generation Neural Prosthetics" on ASME.org. The views expressed are those of the author and do not necessarily reflect the views of the publisher. This version of the article was originally published on Live Science.
Source: http://www.livescience.com/43746-next-generation-prosthetics.html
/ About us
Founded by Russian entrepreneur Dmitry Itskov in February 2011 with the participation of leading Russian specialists in the field of neural interfaces, robotics, artificial organs and systems.
The main goals of the 2045 Initiative: the creation and realization of a new strategy for the development of humanity which meets global civilization challenges; the creation of optimale conditions promoting the spiritual enlightenment of humanity; and the realization of a new futuristic reality based on 5 principles: high spirituality, high culture, high ethics, high science and high technologies.
The main science mega-project of the 2045 Initiative aims to create technologies enabling the transfer of a individual’s personality to a more advanced non-biological carrier, and extending life, including to the point of immortality. We devote particular attention to enabling the fullest possible dialogue between the world’s major spiritual traditions, science and society.
A large-scale transformation of humanity, comparable to some of the major spiritual and sci-tech revolutions in history, will require a new strategy. We believe this to be necessary to overcome existing crises, which threaten our planetary habitat and the continued existence of humanity as a species. With the 2045 Initiative, we hope to realize a new strategy for humanity's development, and in so doing, create a more productive, fulfilling, and satisfying future.
The "2045" team is working towards creating an international research center where leading scientists will be engaged in research and development in the fields of anthropomorphic robotics, living systems modeling and brain and consciousness modeling with the goal of transferring one’s individual consciousness to an artificial carrier and achieving cybernetic immortality.
An annual congress "The Global Future 2045" is organized by the Initiative to give platform for discussing mankind's evolutionary strategy based on technologies of cybernetic immortality as well as the possible impact of such technologies on global society, politics and economies of the future.
Future prospects of "2045" Initiative for society
2015-2020
The emergence and widespread use of affordable android "avatars" controlled by a "brain-computer" interface. Coupled with related technologies “avatars’ will give people a number of new features: ability to work in dangerous environments, perform rescue operations, travel in extreme situations etc.
Avatar components will be used in medicine for the rehabilitation of fully or partially disabled patients giving them prosthetic limbs or recover lost senses.
2020-2025
Creation of an autonomous life-support system for the human brain linked to a robot, ‘avatar’, will save people whose body is completely worn out or irreversibly damaged. Any patient with an intact brain will be able to return to a fully functioning bodily life. Such technologies will greatly enlarge the possibility of hybrid bio-electronic devices, thus creating a new IT revolution and will make all kinds of superimpositions of electronic and biological systems possible.
2030-2035
Creation of a computer model of the brain and human consciousness with the subsequent development of means to transfer individual consciousness onto an artificial carrier. This development will profoundly change the world, it will not only give everyone the possibility of cybernetic immortality but will also create a friendly artificial intelligence, expand human capabilities and provide opportunities for ordinary people to restore or modify their own brain multiple times. The final result at this stage can be a real revolution in the understanding of human nature that will completely change the human and technical prospects for humanity.
2045
This is the time when substance-independent minds will receive new bodies with capacities far exceeding those of ordinary humans. A new era for humanity will arrive! Changes will occur in all spheres of human activity – energy generation, transportation, politics, medicine, psychology, sciences, and so on.
Today it is hard to imagine a future when bodies consisting of nanorobots will become affordable and capable of taking any form. It is also hard to imagine body holograms featuring controlled matter. One thing is clear however: humanity, for the first time in its history, will make a fully managed evolutionary transition and eventually become a new species. Moreover, prerequisites for a large-scale expansion into outer space will be created as well.
Key elements of the project in the future
• International social movement
• social network immortal.me
• charitable foundation "Global Future 2045" (Foundation 2045)
• scientific research centre "Immortality"
• business incubator
• University of "Immortality"
• annual award for contribution to the realization of the project of "Immortality”.