/ News
Bio-printing transplantable tissues, organs: another step closer
Researchers have made a giant leap towards the goal of 'bio-printing' transplantable tissues and organs for people affected by major diseases and trauma injuries, a new study reports.
Scientists from the Universities of Sydney, Harvard, Stanford and MIT have bio-printed artificial vascular networks mimicking the body's circulatory system that are necessary for growing large complex tissues.
"Thousands of people die each year due to a lack of organs for transplantation," says study lead author and University of Sydney researcher, Dr Luiz Bertassoni.
"Many more are subjected to the surgical removal of tissues and organs due to cancer, or they're involved in accidents with large fractures and injuries.
"Imagine being able to walk into a hospital and have a full organ printed -- or bio-printed, as we call it -- with all the cells, proteins and blood vessels in the right place, simply by pushing the 'print' button in your computer screen.
"We are still far away from that, but our research is addressing exactly that. Our finding is an important new step towards achieving these goals.
"At the moment, we are pretty much printing 'prototypes' that, as we improve, will eventually be used to change the way we treat patients worldwide."
The research challenge -- networking cells with a blood supply.
Cells need ready access to nutrients, oxygen and an effective 'waste disposal' system to sustain life. This is why 'vascularization' -- a functional transportation system - is central to the engineering of biological tissues and organs.
"One of the greatest challenges to the engineering of large tissues and organs is growing a network of blood vessels and capillaries," says Dr Bertassoni.
"Cells die without an adequate blood supply because blood supplies oxygen that's necessary for cells to grow and perform a range of functions in the body."
"To illustrate the scale and complexity of the bio-engineering challenge we face, consider that every cell in the body is just a hair's width from a supply of oxygenated blood.
"Replicating the complexity of these networks has been a stumbling block preventing tissue engineering from becoming a real world clinical application."
But this is what researchers have now achieved.
What the researchers achieved
Using a high-tech 'bio-printer', the researchers fabricated a multitude of interconnected tiny fibres to serve as the mold for the artificial blood vessels.
They then covered the 3D printed structure with a cell-rich protein-based material, which was solidified by applying light to it.
Lastly they removed the bio-printed fibres to leave behind a network of tiny channels coated with human endothelial cells, which self organized to form stable blood capillaries in less than a week.
The study reveals that the bioprinted vascular networks promoted significantly better cell survival, differentiation and proliferation compared to cells that received no nutrient supply.
Significance of the breakthrough
According to Dr Bertassoni, a major benefit of the new bio-printing technique is the ability to fabricate large three-dimensional micro-vascular channels capable of supporting life on the fly, with enough precision to match individual patients' needs.
"While recreating little parts of tissues in the lab is something that we have already been able to do, the possibility of printing three-dimensional tissues with functional blood capillaries in the blink of an eye is a game changer," he says.
"Of course, simplified regenerative materials have long been available, but true regeneration of complex and functional organs is what doctors really want and patients really need, and this is the objective of our work.
Story Source:
The above story is based on materials provided by University of Sydney. Note: Materials may be edited for content and length.
Journal Reference:
- Luiz E. Bertassoni, Martina Cecconi, Vijayan Manoharan, Mehdi Nikkhah, Jesper Hjortnaes, Ana Luiza Cristino, Giada Barabaschi, Danilo Demarchi, Mehmet R. Dokmeci, Yunzhi Yang, Ali Khademhosseini. Hydrogel bioprinted microchannel networks for vascularization of tissue engineering constructs. Lab on a Chip, 2014; 14 (13): 2202 DOI: 10.1039/C4LC00030G
Source: http://www.sciencedaily.com/releases/2014/06/140630103136.htm
/ About us
Founded by Russian entrepreneur Dmitry Itskov in February 2011 with the participation of leading Russian specialists in the field of neural interfaces, robotics, artificial organs and systems.
The main goals of the 2045 Initiative: the creation and realization of a new strategy for the development of humanity which meets global civilization challenges; the creation of optimale conditions promoting the spiritual enlightenment of humanity; and the realization of a new futuristic reality based on 5 principles: high spirituality, high culture, high ethics, high science and high technologies.
The main science mega-project of the 2045 Initiative aims to create technologies enabling the transfer of a individual’s personality to a more advanced non-biological carrier, and extending life, including to the point of immortality. We devote particular attention to enabling the fullest possible dialogue between the world’s major spiritual traditions, science and society.
A large-scale transformation of humanity, comparable to some of the major spiritual and sci-tech revolutions in history, will require a new strategy. We believe this to be necessary to overcome existing crises, which threaten our planetary habitat and the continued existence of humanity as a species. With the 2045 Initiative, we hope to realize a new strategy for humanity's development, and in so doing, create a more productive, fulfilling, and satisfying future.
The "2045" team is working towards creating an international research center where leading scientists will be engaged in research and development in the fields of anthropomorphic robotics, living systems modeling and brain and consciousness modeling with the goal of transferring one’s individual consciousness to an artificial carrier and achieving cybernetic immortality.
An annual congress "The Global Future 2045" is organized by the Initiative to give platform for discussing mankind's evolutionary strategy based on technologies of cybernetic immortality as well as the possible impact of such technologies on global society, politics and economies of the future.
Future prospects of "2045" Initiative for society
2015-2020
The emergence and widespread use of affordable android "avatars" controlled by a "brain-computer" interface. Coupled with related technologies “avatars’ will give people a number of new features: ability to work in dangerous environments, perform rescue operations, travel in extreme situations etc.
Avatar components will be used in medicine for the rehabilitation of fully or partially disabled patients giving them prosthetic limbs or recover lost senses.
2020-2025
Creation of an autonomous life-support system for the human brain linked to a robot, ‘avatar’, will save people whose body is completely worn out or irreversibly damaged. Any patient with an intact brain will be able to return to a fully functioning bodily life. Such technologies will greatly enlarge the possibility of hybrid bio-electronic devices, thus creating a new IT revolution and will make all kinds of superimpositions of electronic and biological systems possible.
2030-2035
Creation of a computer model of the brain and human consciousness with the subsequent development of means to transfer individual consciousness onto an artificial carrier. This development will profoundly change the world, it will not only give everyone the possibility of cybernetic immortality but will also create a friendly artificial intelligence, expand human capabilities and provide opportunities for ordinary people to restore or modify their own brain multiple times. The final result at this stage can be a real revolution in the understanding of human nature that will completely change the human and technical prospects for humanity.
2045
This is the time when substance-independent minds will receive new bodies with capacities far exceeding those of ordinary humans. A new era for humanity will arrive! Changes will occur in all spheres of human activity – energy generation, transportation, politics, medicine, psychology, sciences, and so on.
Today it is hard to imagine a future when bodies consisting of nanorobots will become affordable and capable of taking any form. It is also hard to imagine body holograms featuring controlled matter. One thing is clear however: humanity, for the first time in its history, will make a fully managed evolutionary transition and eventually become a new species. Moreover, prerequisites for a large-scale expansion into outer space will be created as well.
Key elements of the project in the future
• International social movement
• social network immortal.me
• charitable foundation "Global Future 2045" (Foundation 2045)
• scientific research centre "Immortality"
• business incubator
• University of "Immortality"
• annual award for contribution to the realization of the project of "Immortality”.