/ News
On the road to artificial photosynthesis: Study reveals key catalytic factors in carbon dioxide reduction
This TEM shows gold–copper bimetallic nanoparticles used as catalysts for the reduction of carbon dioxide, a key reaction for artificial photosynthesis.Credit: Image courtesy of Peidong Yang group, Berkeley Lab
The excessive atmospheric carbon dioxide that is driving global climate change could be harnessed into a renewable energy technology that would be a win for both the environment and the economy. That is the lure of artificial photosynthesis in which the electrochemical reduction of carbon dioxide is used to produce clean, green and sustainable fuels. However, finding a catalyst for reducing carbon dioxide that is highly selective and efficient has proven to be a huge scientific challenge. Meeting this challenge in the future should be easier thanks to new research results from Berkeley Lab.
Peidong Yang, a chemist with Berkeley Lab's Materials Sciences Division, led a study in which bimetallic nanoparticles of gold and copper were used as the catalyst for the carbon dioxide reduction. The results experimentally revealed for the first time the critical influence of the electronic and geometric effects in the reduction reaction.
"Acting synergistically, the electronic and geometric effects dictate the binding strength for reaction intermediates and consequently the catalytic selectivity and efficiency in the electrochemical reduction of carbon dioxide," Yang says. "In the future, the design of carbon dioxide reduction catalysts with good activity and selectivity will require the careful balancing of these two effects as revealed in our study."
Yang, who also holds appointments with the University of California (UC) Berkeley and the Kavli Energy NanoSciences Institute at Berkeley, is a leading authority on nanoparticle phenomena. His most recent research has focused on nanocatalysts fashioned from metal alloys rather than a single metal such as gold, tin or copper.
Nanoscience expert Peidong Yang holds appointments with Berkeley Lab, UC Berkeley and the Kavli Energy NanoSciences Institute at Berkeley. (Photo by Roy Kaltschmidt)
"By alloying, we believe we can tune the binding strength of intermediates on a catalyst surface to enhance the reaction kinetics for the carbon dioxide reduction," he says. "Nanoparticles provide an ideal platform for studying this effect because, through appropriate synthetic processes, we can access a wide range of compositions, sizes and shapes, allowing for a deeper understanding of catalyst performance through precise control of active sites."
In addition, Yang says, nanoparticle as catalysts have high surface-to-volume and surface-to-mass ratios that are advantageous for achieving high catalytic activity. For this new study, uniform gold-copper bimetallic nanoparticles with different compositions were assembled into ordered monolayers then observed during carbon dioxide reduction.
"The ordered monolayers served as a well-defined platform that enabled us to better understand their fundamental catalytic activity in carbon dioxide reduction," Yang says. "Based on our observations, the activity of the gold-copper bimetallic nanoparticles can be explained in terms of the electronic effect, in which the binding of intermediates can be tuned using different surface compositions, and the geometric effect, in which the local atomic arrangement at the active site allows the catalyst to deviate from the scaling relation."
The effects Yang and his colleagues observed for gold-copper bimetallic nanoparticles should hold true for other carbon dioxide reduction catalysts as well.
"We expect the effects we observed to be universal for a wide range of catalysts, as evidenced in other areas of catalysis such as the hydrogen evolution and oxygen reduction reactions," says Dohyung Kim, a member of Yang's research group and a collaborator in this study. "The factors we have identified are based on the solid concept of electrocatalysis."
Knowing the influence of the electronic and geometric effects makes it possible to deduce how intermediate products in the reduction of carbon dioxide, such as carboxylic acid and carbon monoxide, will interact with the surface of a newly proposed catalyst and thereby provide the means for predicting the catalyst's performance. Coupled with the exceptional structuring of active catalytic sites made possible by the use of nanoparticles, the path is paved, Yang and his colleagues believe, for unprecedented improvements in electrochemical carbon dioxide reduction.
"My group is now using the insights gained from this study in the design of next generation carbon dioxide reduction catalysts," Yang says.
A paper describing this research has been published in Nature Communicationsentitled "Synergistic geometric and electronic effects for electrochemical reduction of carbon dioxide using gold-copper bimetallic nanoparticles." Yang is the corresponding author and Kim is the lead author. The other co-authors are Joaquin Resasco, Yi Yu and Abdullah Mohamed Asiri.
Story Source:
The above story is based on materials provided by DOE/Lawrence Berkeley National Laboratory. Note: Materials may be edited for content and length.
Journal Reference:
- Dohyung Kim, Joaquin Resasco, Yi Yu, Abdullah Mohamed Asiri, Peidong Yang.Synergistic geometric and electronic effects for electrochemical reduction of carbon dioxide using gold–copper bimetallic nanoparticles. Nature Communications, 2014; 5: 4948 DOI: 10.1038/ncomms5948
Source: http://www.sciencedaily.com/releases/2014/09/140925150824.htm
/ About us
Founded by Russian entrepreneur Dmitry Itskov in February 2011 with the participation of leading Russian specialists in the field of neural interfaces, robotics, artificial organs and systems.
The main goals of the 2045 Initiative: the creation and realization of a new strategy for the development of humanity which meets global civilization challenges; the creation of optimale conditions promoting the spiritual enlightenment of humanity; and the realization of a new futuristic reality based on 5 principles: high spirituality, high culture, high ethics, high science and high technologies.
The main science mega-project of the 2045 Initiative aims to create technologies enabling the transfer of a individual’s personality to a more advanced non-biological carrier, and extending life, including to the point of immortality. We devote particular attention to enabling the fullest possible dialogue between the world’s major spiritual traditions, science and society.
A large-scale transformation of humanity, comparable to some of the major spiritual and sci-tech revolutions in history, will require a new strategy. We believe this to be necessary to overcome existing crises, which threaten our planetary habitat and the continued existence of humanity as a species. With the 2045 Initiative, we hope to realize a new strategy for humanity's development, and in so doing, create a more productive, fulfilling, and satisfying future.
The "2045" team is working towards creating an international research center where leading scientists will be engaged in research and development in the fields of anthropomorphic robotics, living systems modeling and brain and consciousness modeling with the goal of transferring one’s individual consciousness to an artificial carrier and achieving cybernetic immortality.
An annual congress "The Global Future 2045" is organized by the Initiative to give platform for discussing mankind's evolutionary strategy based on technologies of cybernetic immortality as well as the possible impact of such technologies on global society, politics and economies of the future.
Future prospects of "2045" Initiative for society
2015-2020
The emergence and widespread use of affordable android "avatars" controlled by a "brain-computer" interface. Coupled with related technologies “avatars’ will give people a number of new features: ability to work in dangerous environments, perform rescue operations, travel in extreme situations etc.
Avatar components will be used in medicine for the rehabilitation of fully or partially disabled patients giving them prosthetic limbs or recover lost senses.
2020-2025
Creation of an autonomous life-support system for the human brain linked to a robot, ‘avatar’, will save people whose body is completely worn out or irreversibly damaged. Any patient with an intact brain will be able to return to a fully functioning bodily life. Such technologies will greatly enlarge the possibility of hybrid bio-electronic devices, thus creating a new IT revolution and will make all kinds of superimpositions of electronic and biological systems possible.
2030-2035
Creation of a computer model of the brain and human consciousness with the subsequent development of means to transfer individual consciousness onto an artificial carrier. This development will profoundly change the world, it will not only give everyone the possibility of cybernetic immortality but will also create a friendly artificial intelligence, expand human capabilities and provide opportunities for ordinary people to restore or modify their own brain multiple times. The final result at this stage can be a real revolution in the understanding of human nature that will completely change the human and technical prospects for humanity.
2045
This is the time when substance-independent minds will receive new bodies with capacities far exceeding those of ordinary humans. A new era for humanity will arrive! Changes will occur in all spheres of human activity – energy generation, transportation, politics, medicine, psychology, sciences, and so on.
Today it is hard to imagine a future when bodies consisting of nanorobots will become affordable and capable of taking any form. It is also hard to imagine body holograms featuring controlled matter. One thing is clear however: humanity, for the first time in its history, will make a fully managed evolutionary transition and eventually become a new species. Moreover, prerequisites for a large-scale expansion into outer space will be created as well.
Key elements of the project in the future
• International social movement
• social network immortal.me
• charitable foundation "Global Future 2045" (Foundation 2045)
• scientific research centre "Immortality"
• business incubator
• University of "Immortality"
• annual award for contribution to the realization of the project of "Immortality”.