/ News

26.12.2014

New System Allows Individuals to Pick and Choose What Data to Share

A new prototype system from MIT stores data from your digital devices in a single location that you specify, allowing you to pick and choose what data to share with websites and mobile apps.

Cellphone metadata has been in the news quite a bit lately, but the National Security Agency isn’t the only organization that collects information about people’s online behavior. Newly downloaded cellphone apps routinely ask to access your location information, your address book, or other apps, and of course, websites like Amazon or Netflix track your browsing history in the interest of making personalized recommendations.

At the same time, a host of recent studies have demonstrated that it’s shockingly easy to identify unnamed individuals in supposedly “anonymized” data sets, even ones containing millions of records. So, if we want the benefits of data mining — like personalized recommendations or localized services — how can we protect our privacy?

In the latest issue of PLOS One, MIT researchers offer one possible answer. Their prototype system, openPDS — short for personal data store — stores data from your digital devices in a single location that you specify: It could be an encrypted server in the cloud, but it could also be a computer in a locked box under your desk. Any cellphone app, online service, or big-data research team that wants to use your data has to query your data store, which returns only as much information as is required.

Sharing code, not data

“The example I like to use is personalized music,” says Yves-Alexandre de Montjoye, a graduate student in media arts and sciences and first author on the new paper. “Pandora, for example, comes down to this thing that they call the music genome, which contains a summary of your musical tastes. To recommend a song, all you need is the last 10 songs you listened to — just to make sure you don’t keep recommending the same one again — and this music genome. You don’t need the list of all the songs you’ve been listening to.”

With openPDS, de Montjoye says, “You share code; you don’t share data. Instead of you sending data to Pandora, for Pandora to define what your musical preferences are, it’s Pandora sending a piece of code to you for you to define your musical preferences and send it back to them.”

De Montjoye is joined on the paper by his thesis advisor, Alex “Sandy” Pentland, the Toshiba Professor of Media Arts and Sciences; Erez Shmueli, a postdoc in Pentland’s group; and Samuel Wang, a software engineer at Foursquare who was a graduate student in the Department of Electrical Engineering and Computer Science when the research was done.

After an initial deployment involving 21 people who used openPDS to regulate access to their medical records, the researchers are now testing the system with several telecommunications companies in Italy and Denmark. Although openPDS can, in principle, run on any machine of the user’s choosing, in the trials, data is being stored in the cloud.

Meaningful permissions

One of the benefits of openPDS, de Montjoye says, is that it requires applications to specify what information they need and how it will be used. Today, he says, “when you install an application, it tells you ‘this application has access to your fine-grained GPS location,’ or it ‘has access to your SD card.’ You as a user have absolutely no way of knowing what that means. The permissions don’t tell you anything.”

In fact, applications frequently collect much more data than they really need. Service providers and application developers don’t always know in advance what data will prove most useful, so they store as much as they can against the possibility that they may want it later. It could, for instance, turn out that for some music listeners, album cover art turns out to be a better predictor of what songs they’ll like than anything captured by Pandora’s music genome.

OpenPDS preserves all that potentially useful data, but in a repository controlled by the end user, not the application developer or service provider. A developer who discovers that a previously unused bit of information is useful must request access to it from the user. If the request seems unnecessarily invasive, the user can simply deny it.

Of course, a nefarious developer could try to game the system, constructing requests that elicit more information than the user intends to disclose. A navigation application might, for instance, be authorized to identify the subway stop or parking garage nearest the user. But it shouldn’t need both pieces of information at once, and by requesting them, it could infer more detailed location information than the user wishes to reveal.

Creating safeguards against such information leaks will have to be done on a case-by-case, application-by-application basis, de Montjoye acknowledges, and at least initially, the full implications of some query combinations may not be obvious. But “even if it’s not 100 percent safe, it’s still a huge improvement over the current state,” he says. “If we manage to get people to have access to most of their data, and if we can get the overall state of the art to move from anonymization to interactive systems, that would be such a huge win.”

“OpenPDS is one of the key enabling technologies for the digital society, because it allows users to control their data and at the same time open up its potential both at the economic level and at the level of society,” says Dirk Helbing, a professor of sociology at ETH Zurich. “I don’t see another way of making big data compatible with constitutional rights and human rights.”

Publication: openPDS: Yves-Alexandre de Montjoye, et al., “Protecting the Privacy of Metadata through SafeAnswers,” PLOS One, 2014; DOI: 10.1371/journal.pone.0098790

PDF Copy of the Study: openPDS: Protecting the Privacy of Metadata through SafeAnswers

Source: Larry Hardesty, MIT News

Image: Christine Daniloff/MIT

Source: http://scitechdaily.com/new-system-allows-individuals-pick-choose-data-share/




/ About us

Founded by Russian entrepreneur Dmitry Itskov in February 2011 with the participation of leading Russian specialists in the field of neural interfaces, robotics, artificial organs and systems.

The main goals of the 2045 Initiative: the creation and realization of a new strategy for the development of humanity which meets global civilization challenges; the creation of optimale conditions promoting the spiritual enlightenment of humanity; and the realization of a new futuristic reality based on 5 principles: high spirituality, high culture, high ethics, high science and high technologies. 

The main science mega-project of the 2045 Initiative aims to create technologies enabling the transfer of a individual’s personality to a more advanced non-biological carrier, and extending life, including to the point of immortality. We devote particular attention to enabling the fullest possible dialogue between the world’s major spiritual traditions, science and society.

A large-scale transformation of humanity, comparable to some of the major spiritual and sci-tech revolutions in history, will require a new strategy. We believe this to be necessary to overcome existing crises, which threaten our planetary habitat and the continued existence of humanity as a species. With the 2045 Initiative, we hope to realize a new strategy for humanity's development, and in so doing, create a more productive, fulfilling, and satisfying future.

The "2045" team is working towards creating an international research center where leading scientists will be engaged in research and development in the fields of anthropomorphic robotics, living systems modeling and brain and consciousness modeling with the goal of transferring one’s individual consciousness to an artificial carrier and achieving cybernetic immortality.

An annual congress "The Global Future 2045" is organized by the Initiative to give platform for discussing mankind's evolutionary strategy based on technologies of cybernetic immortality as well as the possible impact of such technologies on global society, politics and economies of the future.

 

Future prospects of "2045" Initiative for society

2015-2020

The emergence and widespread use of affordable android "avatars" controlled by a "brain-computer" interface. Coupled with related technologies “avatars’ will give people a number of new features: ability to work in dangerous environments, perform rescue operations, travel in extreme situations etc.
Avatar components will be used in medicine for the rehabilitation of fully or partially disabled patients giving them prosthetic limbs or recover lost senses.

2020-2025

Creation of an autonomous life-support system for the human brain linked to a robot, ‘avatar’, will save people whose body is completely worn out or irreversibly damaged. Any patient with an intact brain will be able to return to a fully functioning  bodily life. Such technologies will  greatly enlarge  the possibility of hybrid bio-electronic devices, thus creating a new IT revolution and will make  all  kinds of superimpositions of electronic and biological systems possible.

2030-2035

Creation of a computer model of the brain and human consciousness  with the subsequent development of means to transfer individual consciousness  onto an artificial carrier. This development will profoundly change the world, it will not only give everyone the possibility of  cybernetic immortality but will also create a friendly artificial intelligence,  expand human capabilities  and provide opportunities for ordinary people to restore or modify their own brain multiple times.  The final result  at this stage can be a real revolution in the understanding of human nature that will completely change the human and technical prospects for humanity.

2045

This is the time when substance-independent minds will receive new bodies with capacities far exceeding those of ordinary humans. A new era for humanity will arrive!  Changes will occur in all spheres of human activity – energy generation, transportation, politics, medicine, psychology, sciences, and so on.

Today it is hard to imagine a future when bodies consisting of nanorobots  will become affordable  and capable of taking any form. It is also hard to imagine body holograms featuring controlled matter. One thing is clear however:  humanity, for the first time in its history, will make a fully managed evolutionary transition and eventually become a new species. Moreover,  prerequisites for a large-scale  expansion into outer space will be created as well.

 

Key elements of the project in the future

• International social movement
• social network immortal.me
• charitable foundation "Global Future 2045" (Foundation 2045)
• scientific research centre "Immortality"
• business incubator
• University of "Immortality"
• annual award for contribution to the realization of  the project of "Immortality”.

Login as user:

If you are registered on one of these websites, you can get a quick registration. To do this, please select the wesite and follow the instructions.

Login to 2045.com

Email:
You do not have login to 2045.com? Register!
Dear colleagues, partners, friends! If you support ​the 2045 strategic social initiative goals and values, please register on our website.

Quick registration:

If you are registered on one of these websites, you can get a quick registration. To do this, please select the wesite and follow the instructions.

Registration

Name:
Surname:
Field of activity:
Email:
Password:
Enter the code shown:

Show another picture

Восстановить пароль

Email:

Text:
Contact Email:
Attachment ( not greater than 5 Mb. ):
 
Close
avatar project milestones