/ News
Researchers develop new-generation 'thinking' biomimetic robots as ocean engineering solutions
NUS Engineering researchers are closer to creating underwater robotic creatures with a brain of their own – besides behaving like the real thing. In the near future, it would not be too tall an order for the team to produce a swarm of autonomous tiny robotic sea turtles and fishes for example, to perform hazardous missions such as detecting nuclear wastes underwater or other tasks too dangerous for humans.
In the underwater robotic world, turtle robots are among the most maneuverable. The NUS team's turtle robot, besides being maneuverable, can also go about determinedly performing what it is set out to do, while being able to react to exigencies and obstacles.
Associate Professor S K Panda leads a team of researchers at the Electrical and Computer Engineering Department are involved in the research and development of biomimetic solutions in ocean engineering—looking towards nature for solutions to technical challenges with robots mimicking natural systems. The team is currently putting the final touches to a robotic sea turtle which could move about underwater, including diving to deeper depths vertically, like a real turtle, by just using its front and hind limb gait movements.
Explains Assoc Prof Panda, "Our turtle robot does not use a ballast system which is commonly used in underwater robots for diving or sinking functions. Without this ballast system, it is much smaller and lighter, enabling it to carry bigger payloads so that it can perform more complicated tasks such as surveillance, water quality monitoring in Singapore reservoir or energy harvesting for long endurance. Being able to do a dynamic dive or sinking vertically means that it can also enter vertical tunnels or pipes in the seabed with very small diameters."
Being smaller and lighter would also enhance its energy efficiency. The NUS turtle robot is also able to self-charge, further reducing the need for it to return to base station for recharging. It is agile and able to turn sharp corners with small radius, without losing speed.
Added Assoc Prof Panda, "We can have a swarm of tiny turtles which communicate with each other and act collaboratively to perform their duties. With improved maneuverability they can go to tiny and narrow places like crevices where bigger vessels are unable to do so."
Mr Abhra Roy Chowdhury who has been working towards lifelike underwater robots for the last three years for his PhD, said the team has designed and developed four other underwater prototypes – a spherical robot that mimics a puffer fish in structure but uses a jet propulsion technique similar to jellyfishes and squids; and three robotic fishes of different morphologies. These robots are scalable, modular and possess stealth (ability to avoid detection) features.
"If need be, we can actually combine all their merits in a single robot," added Mr Chowdhury.
Robots with lifelike 'brain' and muscles
Mr Chowdhury first developed a lifelike fish robot some three years ago – after spending a considerable amount of time studying the maneuverable and energy efficient movements of real fishes.
"For example, many fishes using body-caudal fin (BCF) locomotion, bend their bodies into a backward-moving propulsive wave that extends to caudal fin while fishes using median-paired fin (MPF) locomotion use their other fins like dorsal and anal to propel themselves," he explains.
He had studied the yellow-fin tuna and the freshwater largemouth bass specifically as they have the most common fish body types as well as swimming patterns. Both are found to be efficient swimmers in sea-environment. He has further developed a novel bio-inspired dynamics and behavior based control architecture for these biomimetic platforms.
Another member of the team, Research Engineer Mr Bhuneshwar Prasad, has also developed a spherical robot. This robot can be used for oceanic surveys, inspections of pipe and cable, inspection of a ship hull or a propeller's shaft, for example. The spherical robot is vision-based and uses a "visual servoing" system comprising of an on-board bottom facing camera module that is color-coded to extract the position information and then guide the robot.
"The spherical underwater robot, using a self-ballast system, is able to dock on soft ground to harvest energy from underwater currents. Once on the seabed, the robot can be placed in the sleep mode, with only monitoring sensors awake, to harvest power from the underwater current through dynamo based rotor blades," he explains.
Looking forward
"We expect to invent robots capable of performing collaborative intervention missions three to five years down the road. What we plan to do in the near future is to develop robot fish with muscles which can undulate the way real fish do. For this, we need to develop special actuators. We also aim to develop central pattern generators which will enable the fish to respond to external stimuli so that it can make crucial decisions to complete a critical mission." said Assoc Prof Panda.
Source: http://phys.org/news/2014-12-new-generation-biomimetic-robots-ocean-solutions.html
/ About us
Founded by Russian entrepreneur Dmitry Itskov in February 2011 with the participation of leading Russian specialists in the field of neural interfaces, robotics, artificial organs and systems.
The main goals of the 2045 Initiative: the creation and realization of a new strategy for the development of humanity which meets global civilization challenges; the creation of optimale conditions promoting the spiritual enlightenment of humanity; and the realization of a new futuristic reality based on 5 principles: high spirituality, high culture, high ethics, high science and high technologies.
The main science mega-project of the 2045 Initiative aims to create technologies enabling the transfer of a individual’s personality to a more advanced non-biological carrier, and extending life, including to the point of immortality. We devote particular attention to enabling the fullest possible dialogue between the world’s major spiritual traditions, science and society.
A large-scale transformation of humanity, comparable to some of the major spiritual and sci-tech revolutions in history, will require a new strategy. We believe this to be necessary to overcome existing crises, which threaten our planetary habitat and the continued existence of humanity as a species. With the 2045 Initiative, we hope to realize a new strategy for humanity's development, and in so doing, create a more productive, fulfilling, and satisfying future.
The "2045" team is working towards creating an international research center where leading scientists will be engaged in research and development in the fields of anthropomorphic robotics, living systems modeling and brain and consciousness modeling with the goal of transferring one’s individual consciousness to an artificial carrier and achieving cybernetic immortality.
An annual congress "The Global Future 2045" is organized by the Initiative to give platform for discussing mankind's evolutionary strategy based on technologies of cybernetic immortality as well as the possible impact of such technologies on global society, politics and economies of the future.
Future prospects of "2045" Initiative for society
2015-2020
The emergence and widespread use of affordable android "avatars" controlled by a "brain-computer" interface. Coupled with related technologies “avatars’ will give people a number of new features: ability to work in dangerous environments, perform rescue operations, travel in extreme situations etc.
Avatar components will be used in medicine for the rehabilitation of fully or partially disabled patients giving them prosthetic limbs or recover lost senses.
2020-2025
Creation of an autonomous life-support system for the human brain linked to a robot, ‘avatar’, will save people whose body is completely worn out or irreversibly damaged. Any patient with an intact brain will be able to return to a fully functioning bodily life. Such technologies will greatly enlarge the possibility of hybrid bio-electronic devices, thus creating a new IT revolution and will make all kinds of superimpositions of electronic and biological systems possible.
2030-2035
Creation of a computer model of the brain and human consciousness with the subsequent development of means to transfer individual consciousness onto an artificial carrier. This development will profoundly change the world, it will not only give everyone the possibility of cybernetic immortality but will also create a friendly artificial intelligence, expand human capabilities and provide opportunities for ordinary people to restore or modify their own brain multiple times. The final result at this stage can be a real revolution in the understanding of human nature that will completely change the human and technical prospects for humanity.
2045
This is the time when substance-independent minds will receive new bodies with capacities far exceeding those of ordinary humans. A new era for humanity will arrive! Changes will occur in all spheres of human activity – energy generation, transportation, politics, medicine, psychology, sciences, and so on.
Today it is hard to imagine a future when bodies consisting of nanorobots will become affordable and capable of taking any form. It is also hard to imagine body holograms featuring controlled matter. One thing is clear however: humanity, for the first time in its history, will make a fully managed evolutionary transition and eventually become a new species. Moreover, prerequisites for a large-scale expansion into outer space will be created as well.
Key elements of the project in the future
• International social movement
• social network immortal.me
• charitable foundation "Global Future 2045" (Foundation 2045)
• scientific research centre "Immortality"
• business incubator
• University of "Immortality"
• annual award for contribution to the realization of the project of "Immortality”.