/ News
New Form of Memory Could Advance Brain-Inspired Computers
A new form of computer memory might help machines match the capabilities of the human brain when it comes to tasks such as interpreting images or video footage.
Researchers at IBM used what’s known as phase-change memory to build a device that processes data in a way inspired by the workings of a biological brain. Using a prototype phase-change memory chip, the researchers configured the system to act like a network of 913 neurons with 165,000 connections, or synapses, between them. The strength of those connections change as the chip processes incoming data, altering how the virtual neurons influence one another. By exploiting that property, the researchers got the system to learn to recognize handwritten numbers.
Phase-change memory is expected to hit the market in the next few years. It can write information more quickly, and pack it more densely, than the memory used in computers today (see “A Preview of Future Disk Drives”). A phase-change memory chip consists of a grid of “cells” that can each switch between two states to represent a digital bit of information—a 1 or a 0. In IBM’s experimental system, each “synapse” is represented by a pair of memory cells working together.
Computer scientists have been working for some time on chips that crudely mimic neurons and synapses. Such “neuromorphic” designs are radically different from the chips we use today. But they promise to make computers that are efficient at tasks computers normally find challenging, such as learning from experience or understanding video (see “Thinking in Silicon”).
Earlier this year, IBM announced the most complex neuromorphic chip yet (see “IBM Chip Processes Data Similar to the Way Your Brain Does”). It was made using the techniques and components used to build smartphone processors.
The experimental system announced by IBM researchers this week is much less powerful than that chip. But the fact the new system’s 165,000 synapses are made using phase-change memory is significant, says Geoff Burr, a researcher at IBM’s Almaden Research Center in San Jose, California.
Phase-change memory is thought to be particularly well suited to neuromorphic computer systems because it stores data so densely, making it possible to create brain-inspired systems with many more synapses, says Burr. Phase-change memory is also simpler to reprogram. That makes it practical for building a neuromorphic system that is able to “learn” by adjusting its behavior as it is fed new data.
Previous efforts at using phase-change memory to build neuromorphic systems have been modest, with 100 synapses or less, says Burr. The new system, built with colleagues at IBM and Pohang University of Science and Technology, in Korea, is more than 1,000 times that size. A paper on their results was presented at the International Electron Devices Meeting in San Francisco earlier this month.
The team was able to make a much larger system because it developed techniques to measure and compensate for the natural variability in the performance of each unit of phase-change memory. Similar variability affects the conventional memory chips in our phones and computers today, but error-checking methods are more advanced for those devices.
After being shown 5,000 labelled images of handwritten digits from a standardized data set, the researchers’ chip could recognize handwritten digits it had never seen before with an accuracy of 82 percent. Burr says that a recent tweak to his team’s error compensation methods should allow accuracy to climb to close to 99 percent.
Eugenio Culurciello, a professor at Purdue University who works on neuromorphic chip designs, says phase-change memory could enhance neuromorphic designs in interesting ways. However, he notes that engineers are at the early stages of understanding how to create brain-style chips. “These things are still a bit exotic,” he says.
Source: http://www.technologyreview.com/news/533526/new-form-of-memory-could-advance-brain-inspired-computers/
/ About us
Founded by Russian entrepreneur Dmitry Itskov in February 2011 with the participation of leading Russian specialists in the field of neural interfaces, robotics, artificial organs and systems.
The main goals of the 2045 Initiative: the creation and realization of a new strategy for the development of humanity which meets global civilization challenges; the creation of optimale conditions promoting the spiritual enlightenment of humanity; and the realization of a new futuristic reality based on 5 principles: high spirituality, high culture, high ethics, high science and high technologies.
The main science mega-project of the 2045 Initiative aims to create technologies enabling the transfer of a individual’s personality to a more advanced non-biological carrier, and extending life, including to the point of immortality. We devote particular attention to enabling the fullest possible dialogue between the world’s major spiritual traditions, science and society.
A large-scale transformation of humanity, comparable to some of the major spiritual and sci-tech revolutions in history, will require a new strategy. We believe this to be necessary to overcome existing crises, which threaten our planetary habitat and the continued existence of humanity as a species. With the 2045 Initiative, we hope to realize a new strategy for humanity's development, and in so doing, create a more productive, fulfilling, and satisfying future.
The "2045" team is working towards creating an international research center where leading scientists will be engaged in research and development in the fields of anthropomorphic robotics, living systems modeling and brain and consciousness modeling with the goal of transferring one’s individual consciousness to an artificial carrier and achieving cybernetic immortality.
An annual congress "The Global Future 2045" is organized by the Initiative to give platform for discussing mankind's evolutionary strategy based on technologies of cybernetic immortality as well as the possible impact of such technologies on global society, politics and economies of the future.
Future prospects of "2045" Initiative for society
2015-2020
The emergence and widespread use of affordable android "avatars" controlled by a "brain-computer" interface. Coupled with related technologies “avatars’ will give people a number of new features: ability to work in dangerous environments, perform rescue operations, travel in extreme situations etc.
Avatar components will be used in medicine for the rehabilitation of fully or partially disabled patients giving them prosthetic limbs or recover lost senses.
2020-2025
Creation of an autonomous life-support system for the human brain linked to a robot, ‘avatar’, will save people whose body is completely worn out or irreversibly damaged. Any patient with an intact brain will be able to return to a fully functioning bodily life. Such technologies will greatly enlarge the possibility of hybrid bio-electronic devices, thus creating a new IT revolution and will make all kinds of superimpositions of electronic and biological systems possible.
2030-2035
Creation of a computer model of the brain and human consciousness with the subsequent development of means to transfer individual consciousness onto an artificial carrier. This development will profoundly change the world, it will not only give everyone the possibility of cybernetic immortality but will also create a friendly artificial intelligence, expand human capabilities and provide opportunities for ordinary people to restore or modify their own brain multiple times. The final result at this stage can be a real revolution in the understanding of human nature that will completely change the human and technical prospects for humanity.
2045
This is the time when substance-independent minds will receive new bodies with capacities far exceeding those of ordinary humans. A new era for humanity will arrive! Changes will occur in all spheres of human activity – energy generation, transportation, politics, medicine, psychology, sciences, and so on.
Today it is hard to imagine a future when bodies consisting of nanorobots will become affordable and capable of taking any form. It is also hard to imagine body holograms featuring controlled matter. One thing is clear however: humanity, for the first time in its history, will make a fully managed evolutionary transition and eventually become a new species. Moreover, prerequisites for a large-scale expansion into outer space will be created as well.
Key elements of the project in the future
• International social movement
• social network immortal.me
• charitable foundation "Global Future 2045" (Foundation 2045)
• scientific research centre "Immortality"
• business incubator
• University of "Immortality"
• annual award for contribution to the realization of the project of "Immortality”.