/ News
Growing greens on the Red Planet
The Southampton #LettuceOnMars experiment
When the first living visitor from Earth lands on Mars we might well expect it to be a man or a woman, but if students from the University of Southampton Spaceflight Society have their way, it could be one small step for a lettuce. That may seem more than a bit mad, but its part of an experiment to see if crops can grow in the Martian environment as a prelude to colonization.
If Mars is ever going to be colonized, the pioneers are going to have to learn to live off the land. Shipping food, water, air, spare parts, and the other necessities of life would be insanely expensive, and a completely self-contained habitat, even if feasible, misses the point of colonization and might as well be built in the Gobi Desert or Antarctica. A truly success colony will need, for example, to use the Martian air and the Martian sunlight to grow crops.
Developed by a team of under and postgraduate students as part of an international competition sponsored by the Mars One group, the Southampton #LettuceOnMars experiment consists of a small greenhouse that will be able to grow lettuces using the atmosphere and sunlight on Mars. The goal is to demonstrate that it is feasible to grow crops on Mars with an open-ended technology that uses Martian resources rather than the closed systems used in gardening experiments on the International Space Station or relying on materials sent from Earth.
The greenhouse consists of an aircraft-grade aluminum case with a polycarbonate dome, which is curved to prevent to accumulation of dust in the event of a storm, blocks the hard UV radiation from the Sun, and acts as a bioshield to separate the growing area from the outside world. In addition, the experiment also includes pumps for pressurizing the extremely thin Martian atmosphere; filters to keep out dust; a heater; supplies of water, nutrients, and pH balancing chemicals; and a bank of UV lamps.
The latter is particularly important because the sunlight on Mars is only half as bright as it is on Earth. On the best days, it only reaches the level of an overcast winter's day, so LEDs designed to shed a narrow spectrum of light to promote growth will be used as a supplement.
So why choose the common lettuce? According to the Southampton team, it is because lettuce is often used in growing experiments, has already flown in space several times, is edible, grows quickly from hardy seed, and is compact.
Block diagram of the Martian lettuce experiment
At the beginning of the mission, the experiment, if selected, will be inactive and the lettuce seeds frozen into a state of dormancy for the seven-month voyage to the Red Planet on the Mars One unmanned lander in 2018. The landing area has yet to be determined, but Mars One says it will be in a band covering the ancient Martian seabeds that now form the northern plains of Mars between 40⁰ and 50⁰ latitude. This is regarded as an area for a future colony because the air pressure is slightly higher than in the uplands.
On the surface, the greenhouse will be heated to 21⁰ to 24⁰ C (70⁰ to 75⁰ F), then pressurized using the Martian atmosphere combined with nutrient-laced water vapor and oxygen generated by electrolysis. Once the seeds have germinated, the twilight-like Martian sunlight will be supplemented by the LEDs as cameras and sensors track the growth of the lettuces over a four week period. After the experiment is complete, the heating unit will be turned up to high to kill the lettuces and destroy and living organisms that might be in the greenhouse to avoid contaminating the Martian environment.
"To live on other planets we need to grow food there. No-one has ever actually done this and we intend to be the first," says project leader Suzanna Lucarotti. "This plan is both technically feasible and incredibly ambitious in its scope, for we will be bringing the first complex life to another planet. Growing plants on other planets is something that needs to be done, and will lead to a wealth of research and industrial opportunities that our plan aims to bring to the University of Southampton. We have tackled diverse sets of engineering challenges, including aeroponic systems, bio filters, low power gas pressurization systems and failsafe planetary protection systems and then integrated them all into one payload on a tight mass, power and cost budget."
The #LettuceOnMars project is one of ten university team finalists vying for a spot on the Mars One's unmanned lander, which is scheduled to touch down in 2018. According to the team, the Southampton experiment has passed the technical review and is now awaiting the results of a popular online vote, which ended on December 31.
Source: http://www.gizmag.com/mars-one-lettuce-southampton/35424/
/ About us
Founded by Russian entrepreneur Dmitry Itskov in February 2011 with the participation of leading Russian specialists in the field of neural interfaces, robotics, artificial organs and systems.
The main goals of the 2045 Initiative: the creation and realization of a new strategy for the development of humanity which meets global civilization challenges; the creation of optimale conditions promoting the spiritual enlightenment of humanity; and the realization of a new futuristic reality based on 5 principles: high spirituality, high culture, high ethics, high science and high technologies.
The main science mega-project of the 2045 Initiative aims to create technologies enabling the transfer of a individual’s personality to a more advanced non-biological carrier, and extending life, including to the point of immortality. We devote particular attention to enabling the fullest possible dialogue between the world’s major spiritual traditions, science and society.
A large-scale transformation of humanity, comparable to some of the major spiritual and sci-tech revolutions in history, will require a new strategy. We believe this to be necessary to overcome existing crises, which threaten our planetary habitat and the continued existence of humanity as a species. With the 2045 Initiative, we hope to realize a new strategy for humanity's development, and in so doing, create a more productive, fulfilling, and satisfying future.
The "2045" team is working towards creating an international research center where leading scientists will be engaged in research and development in the fields of anthropomorphic robotics, living systems modeling and brain and consciousness modeling with the goal of transferring one’s individual consciousness to an artificial carrier and achieving cybernetic immortality.
An annual congress "The Global Future 2045" is organized by the Initiative to give platform for discussing mankind's evolutionary strategy based on technologies of cybernetic immortality as well as the possible impact of such technologies on global society, politics and economies of the future.
Future prospects of "2045" Initiative for society
2015-2020
The emergence and widespread use of affordable android "avatars" controlled by a "brain-computer" interface. Coupled with related technologies “avatars’ will give people a number of new features: ability to work in dangerous environments, perform rescue operations, travel in extreme situations etc.
Avatar components will be used in medicine for the rehabilitation of fully or partially disabled patients giving them prosthetic limbs or recover lost senses.
2020-2025
Creation of an autonomous life-support system for the human brain linked to a robot, ‘avatar’, will save people whose body is completely worn out or irreversibly damaged. Any patient with an intact brain will be able to return to a fully functioning bodily life. Such technologies will greatly enlarge the possibility of hybrid bio-electronic devices, thus creating a new IT revolution and will make all kinds of superimpositions of electronic and biological systems possible.
2030-2035
Creation of a computer model of the brain and human consciousness with the subsequent development of means to transfer individual consciousness onto an artificial carrier. This development will profoundly change the world, it will not only give everyone the possibility of cybernetic immortality but will also create a friendly artificial intelligence, expand human capabilities and provide opportunities for ordinary people to restore or modify their own brain multiple times. The final result at this stage can be a real revolution in the understanding of human nature that will completely change the human and technical prospects for humanity.
2045
This is the time when substance-independent minds will receive new bodies with capacities far exceeding those of ordinary humans. A new era for humanity will arrive! Changes will occur in all spheres of human activity – energy generation, transportation, politics, medicine, psychology, sciences, and so on.
Today it is hard to imagine a future when bodies consisting of nanorobots will become affordable and capable of taking any form. It is also hard to imagine body holograms featuring controlled matter. One thing is clear however: humanity, for the first time in its history, will make a fully managed evolutionary transition and eventually become a new species. Moreover, prerequisites for a large-scale expansion into outer space will be created as well.
Key elements of the project in the future
• International social movement
• social network immortal.me
• charitable foundation "Global Future 2045" (Foundation 2045)
• scientific research centre "Immortality"
• business incubator
• University of "Immortality"
• annual award for contribution to the realization of the project of "Immortality”.