/ News
Solving the Last Great 3-D Printing Challenge: Printing in Color
3-D printing is driving a huge revolution in the world of design and technology. In the process, it is changing the way we think about the design, prototyping, and manufacturing of just about everything.
But anyone who has played with a 3-D printer will be aware of one significant problem. This 800-pound gorilla is the issue of color. 3-D prints can be magnificent copies of more or less any shape. But in terms of color, they are mere shadows of the originals.
Today, that looks set to change thanks to the work of Alan Brunton and pals at the Fraunhofer Institute for Computer Graphics Research in Germany, who have worked out how to produce accurate colors in a 3-D print for the first time. Their work promises to take 3-D printing to an entirely new level.
The new approach takes advantage of a relatively new way to make 3-D prints. In general, these objects are made one layer at a time by fusing powder or laying down extruded plastic. Neither approach gives anything but rudimentary control over an object’s color.
What’s needed instead is a way of creating objects in the same way as 2-D printers make images, pixel by pixel. In other words, this requires 3-D prints to be laid down, not in layers, but voxel by voxel.
In the last year or so, exactly this technology has come to market. It works using a number of inkjets that lay down an object, droplet by droplet. These droplets are instantly cured by UV light to form a solid.
That immediately allows the possibility of much more accurate control of color, since each droplet can be thought of as a voxel. This is the approach that Brunton and pals have taken, but it is easier said than done for a number of reasons.
The first is the sheer volume of data and number crunching involved in creating a virtual color 3-D object, even before the printing begins. The droplets from inkjets are tiny—there are some 18 million of them in a solid cubic centimeter. So any decent-sized object must be made up of tens of billions of voxels and the impact that each one has on the final color has to be calculated.
The second is that the droplets are translucent because UV light must be able to pass through to cure them. This has a significant impact on their visual appearance since light ends up passing through several layers of voxels, being scattered along the way.
That means droplet color has to be carefully controlled to a depth of several voxels throughout the object. And this dramatically increases the complexity of the algorithms needed to calculate their required colors.
The final challenge comes from the nature of 3-D printing. In 2-D printing, it is possible to combine up to three different inks at any point on an image. In a 3-D print, each droplet must be a single material and that places important constraints on what is possible colorwise.
Nevertheless, Brunto and co have made significant advances by bringing to bear the many decades of research that has been done on color management for 2-D printing and for color imaging in general.
Their approach is to combine two techniques. The first is the 3-D equivalent of a 2-D printing technique called half-toning. This is where continuous shade and color is replaced by an arrangement of dots of different sizes and spacing. The second is a way of calculating the color of a surface given the way light has been scattered for several layers of voxels below.
And the results look impressive. In the pictures above, three apples and the thumb are real. The rest are 3-D prints but it is no easy task to tell them apart.
And Brunton and co say the results should get better in the near future as materials scientists develop less translucent printing materials and as printers become even higher resolution. In both these respects, the team’s algorithms are future proof. Less translucent inks should be easier to handle and the higher resolution should be manageable too.
The ability to combine translucent and opaque inks should even make it possible to reproduce the surface appearance of many biological materials that are also semi-translucent, such as skin.
That’s fascinating work. It will usher in a new generation of printing application. And it will make the current generation of printers look thoroughly old-fashioned in just a few years.
Ref: arxiv.org/abs/1506.02400 : Pushing the Limits of 3-D Color Printing: Error Diffusion with Translucent Materials
Source: http://www.technologyreview.com/view/538676/solving-the-last-great-3-d-printing-challenge-printing-in-color/
/ About us
Founded by Russian entrepreneur Dmitry Itskov in February 2011 with the participation of leading Russian specialists in the field of neural interfaces, robotics, artificial organs and systems.
The main goals of the 2045 Initiative: the creation and realization of a new strategy for the development of humanity which meets global civilization challenges; the creation of optimale conditions promoting the spiritual enlightenment of humanity; and the realization of a new futuristic reality based on 5 principles: high spirituality, high culture, high ethics, high science and high technologies.
The main science mega-project of the 2045 Initiative aims to create technologies enabling the transfer of a individual’s personality to a more advanced non-biological carrier, and extending life, including to the point of immortality. We devote particular attention to enabling the fullest possible dialogue between the world’s major spiritual traditions, science and society.
A large-scale transformation of humanity, comparable to some of the major spiritual and sci-tech revolutions in history, will require a new strategy. We believe this to be necessary to overcome existing crises, which threaten our planetary habitat and the continued existence of humanity as a species. With the 2045 Initiative, we hope to realize a new strategy for humanity's development, and in so doing, create a more productive, fulfilling, and satisfying future.
The "2045" team is working towards creating an international research center where leading scientists will be engaged in research and development in the fields of anthropomorphic robotics, living systems modeling and brain and consciousness modeling with the goal of transferring one’s individual consciousness to an artificial carrier and achieving cybernetic immortality.
An annual congress "The Global Future 2045" is organized by the Initiative to give platform for discussing mankind's evolutionary strategy based on technologies of cybernetic immortality as well as the possible impact of such technologies on global society, politics and economies of the future.
Future prospects of "2045" Initiative for society
2015-2020
The emergence and widespread use of affordable android "avatars" controlled by a "brain-computer" interface. Coupled with related technologies “avatars’ will give people a number of new features: ability to work in dangerous environments, perform rescue operations, travel in extreme situations etc.
Avatar components will be used in medicine for the rehabilitation of fully or partially disabled patients giving them prosthetic limbs or recover lost senses.
2020-2025
Creation of an autonomous life-support system for the human brain linked to a robot, ‘avatar’, will save people whose body is completely worn out or irreversibly damaged. Any patient with an intact brain will be able to return to a fully functioning bodily life. Such technologies will greatly enlarge the possibility of hybrid bio-electronic devices, thus creating a new IT revolution and will make all kinds of superimpositions of electronic and biological systems possible.
2030-2035
Creation of a computer model of the brain and human consciousness with the subsequent development of means to transfer individual consciousness onto an artificial carrier. This development will profoundly change the world, it will not only give everyone the possibility of cybernetic immortality but will also create a friendly artificial intelligence, expand human capabilities and provide opportunities for ordinary people to restore or modify their own brain multiple times. The final result at this stage can be a real revolution in the understanding of human nature that will completely change the human and technical prospects for humanity.
2045
This is the time when substance-independent minds will receive new bodies with capacities far exceeding those of ordinary humans. A new era for humanity will arrive! Changes will occur in all spheres of human activity – energy generation, transportation, politics, medicine, psychology, sciences, and so on.
Today it is hard to imagine a future when bodies consisting of nanorobots will become affordable and capable of taking any form. It is also hard to imagine body holograms featuring controlled matter. One thing is clear however: humanity, for the first time in its history, will make a fully managed evolutionary transition and eventually become a new species. Moreover, prerequisites for a large-scale expansion into outer space will be created as well.
Key elements of the project in the future
• International social movement
• social network immortal.me
• charitable foundation "Global Future 2045" (Foundation 2045)
• scientific research centre "Immortality"
• business incubator
• University of "Immortality"
• annual award for contribution to the realization of the project of "Immortality”.