/ News
Gene therapy restores hearing in deaf mice
Sensory hair cells in the cochlea of a Beethoven mouse treated with TMC2 gene therapy. In this confocal microscopy image, microvilli are shown in red and cell bodies in green. The human ear has about 16,000 sensory hair cells. Credit: Charles Askew
Using gene therapy, researchers at Boston Children's Hospital and Harvard Medical School have restored hearing in mice with a genetic form of deafness. Their work, published online July 8 by the journal Science Translational Medicine, could pave the way for gene therapy in people with hearing loss caused by genetic mutations.
"Our gene therapy protocol is not yet ready for clinical trials--we need to tweak it a bit more--but in the not-too-distant future we think it could be developed for therapeutic use in humans," says Jeffrey Holt, PhD, a scientist in the Department of Otolaryngology and F.M. Kirby Neurobiology Center at Boston Children's and an associate professor of Otolaryngology at Harvard Medical School.
More than 70 different genes are known to cause deafness when mutated. Holt, with first author Charles Askew and colleagues at École Polytechnique Fédérale de Lausanne in Switzerland, focused on a gene called TMC1. They chose TMC1 because it is a common cause of genetic deafness, accounting for 4 to 8 percent of cases, and encodes a protein that plays a central role in hearing, helping convert sound into electrical signals that travel to the brain.
The researchers tested gene therapy in two types of mutant mice. One type had the TMC1 gene completely deleted, and is a good model for recessive TMC1 mutations in humans: Children with two mutant copies of TMC1 have profound hearing loss from a very young age, usually by around 2 years.
The other type of mouse, called Beethoven, has a specific TMC1 mutation--a change in a single amino acid--and is a good model for the dominant form of TMC1-related deafness. In this form, less common than the recessive form, a single copy of the mutation causes children to gradually go deaf beginning around the age of 10 to 15 years.
To deliver the healthy gene, the team inserted it into an engineered virus called adeno-associated virus 1, or AAV1, together with a promoter--a genetic sequence that turns the gene on only in certain sensory cells of the inner ear known as hair cells. They then injected the gene-bearing AAV1 into the inner ear, with these findings:
- In the recessive deafness model, gene therapy with TMC1 restored the ability of sensory hair cells to respond to sound--producing a measurable electrical current--and also restored activity in the auditory portion of the brainstem.
- Most importantly, the deaf mice regained their ability to hear. To test hearing, the researchers placed the mice in a "startle box" and sounded abrupt, loud tones. "Mice with TMC1 mutations will just sit there, but with gene therapy, they jump as high as a normal mouse," says Holt. (The force of their jump was measured by a plate on the floor underneath them; it was detectable at sounds beginning around 80 decibels.)
- In the dominant deafness model, gene therapy with a related gene, TMC2, was successful at the cellular and brain level, and partially successful at restoring actual hearing in the startle test.
Clinical trials on the horizon
AAV1 is considered safe as a viral vector and is already in use in human gene therapy trials for blindness, heart disease, muscular dystrophy and other conditions. The researchers screened various types of AAV and various types of promoters to choose the best-performing combination. They plan to further optimize their protocol and follow their treated mice to see if they retain hearing longer than the two months already observed.
Ultimately, Holt hopes to partner with clinicians at Boston Children's Department of Otolaryngology and elsewhere to start clinical trials of TMC1 gene therapy within 5 to 10 years.
"Current therapies for profound hearing loss like that caused by the recessive form of TMC1 are hearing aids, which often don't work very well, and cochlear implants," says Margaret Kenna, MD, MPH, a specialist in genetic hearing loss at Boston Children's Hospital who is familiar with the work. "Cochlear implants are great, but your own hearing is better in terms of range of frequencies, nuance for hearing voices, music and background noise, and figuring out which direction a sound is coming from. Anything that could stabilize or improve native hearing at an early age is really exciting and would give a huge boost to a child's ability to learn and use spoken language."
Holt believes that other forms of genetic deafness may also be amenable to the same gene therapy strategy. Overall, severe to profound hearing loss in both ears affects 1 to 3 per 1,000 live births.
"I can envision patients with deafness having their genome sequenced and a tailored, precision medicine treatment injected into their ears to restore hearing," Holt says.
Sound transducers: How TMC works
Holt's team showed in 2013 that TMC1 and the related protein TMC2 are critical for hearing, ending a rigorous 30-year search by scientists. Sensory hair cells in the inner ear contain tiny projections called microvilli, each with a channel at its tip formed by TMC1 and TMC2 proteins. When sound waves wash over the microvilli, they wiggle and the mechanical stimulation causes the channel to open. This allows calcium to enter the cell, generating an electrical signal that travels to the brain and ultimately translates to hearing.
Although the channel is made up of either TMC1 or TMC2, a mutation in the TMC1 gene is sufficient to cause deafness. However, Holt's study also showed that gene therapy with TMC2 could compensate for loss of a functional TMC1 gene, restoring hearing in the recessive deafness model and partial hearing in the dominant deafness model.
"This is a great example of how the basic science can lead to clinical therapies," says Holt.
"The implications of successful gene therapy are profound, and we are delighted to be associated with this study program," says Ernesto Bertarelli, co-chair of the Bertarelli Foundation, the primary funder of the research. "These findings mark a defining moment in the way we understand, and can ultimately challenge, the burden of deafness in humans. The results are testament to the immense dedication of the research team and their commitment to bringing best-in-class science ever closer to real-world application."
Story Source:
The above post is reprinted from materials provided by Boston Children's Hospital. Note: Materials may be edited for content and length.
Source: http://www.sciencedaily.com/releases/2015/07/150708151031.htm
/ About us
Founded by Russian entrepreneur Dmitry Itskov in February 2011 with the participation of leading Russian specialists in the field of neural interfaces, robotics, artificial organs and systems.
The main goals of the 2045 Initiative: the creation and realization of a new strategy for the development of humanity which meets global civilization challenges; the creation of optimale conditions promoting the spiritual enlightenment of humanity; and the realization of a new futuristic reality based on 5 principles: high spirituality, high culture, high ethics, high science and high technologies.
The main science mega-project of the 2045 Initiative aims to create technologies enabling the transfer of a individual’s personality to a more advanced non-biological carrier, and extending life, including to the point of immortality. We devote particular attention to enabling the fullest possible dialogue between the world’s major spiritual traditions, science and society.
A large-scale transformation of humanity, comparable to some of the major spiritual and sci-tech revolutions in history, will require a new strategy. We believe this to be necessary to overcome existing crises, which threaten our planetary habitat and the continued existence of humanity as a species. With the 2045 Initiative, we hope to realize a new strategy for humanity's development, and in so doing, create a more productive, fulfilling, and satisfying future.
The "2045" team is working towards creating an international research center where leading scientists will be engaged in research and development in the fields of anthropomorphic robotics, living systems modeling and brain and consciousness modeling with the goal of transferring one’s individual consciousness to an artificial carrier and achieving cybernetic immortality.
An annual congress "The Global Future 2045" is organized by the Initiative to give platform for discussing mankind's evolutionary strategy based on technologies of cybernetic immortality as well as the possible impact of such technologies on global society, politics and economies of the future.
Future prospects of "2045" Initiative for society
2015-2020
The emergence and widespread use of affordable android "avatars" controlled by a "brain-computer" interface. Coupled with related technologies “avatars’ will give people a number of new features: ability to work in dangerous environments, perform rescue operations, travel in extreme situations etc.
Avatar components will be used in medicine for the rehabilitation of fully or partially disabled patients giving them prosthetic limbs or recover lost senses.
2020-2025
Creation of an autonomous life-support system for the human brain linked to a robot, ‘avatar’, will save people whose body is completely worn out or irreversibly damaged. Any patient with an intact brain will be able to return to a fully functioning bodily life. Such technologies will greatly enlarge the possibility of hybrid bio-electronic devices, thus creating a new IT revolution and will make all kinds of superimpositions of electronic and biological systems possible.
2030-2035
Creation of a computer model of the brain and human consciousness with the subsequent development of means to transfer individual consciousness onto an artificial carrier. This development will profoundly change the world, it will not only give everyone the possibility of cybernetic immortality but will also create a friendly artificial intelligence, expand human capabilities and provide opportunities for ordinary people to restore or modify their own brain multiple times. The final result at this stage can be a real revolution in the understanding of human nature that will completely change the human and technical prospects for humanity.
2045
This is the time when substance-independent minds will receive new bodies with capacities far exceeding those of ordinary humans. A new era for humanity will arrive! Changes will occur in all spheres of human activity – energy generation, transportation, politics, medicine, psychology, sciences, and so on.
Today it is hard to imagine a future when bodies consisting of nanorobots will become affordable and capable of taking any form. It is also hard to imagine body holograms featuring controlled matter. One thing is clear however: humanity, for the first time in its history, will make a fully managed evolutionary transition and eventually become a new species. Moreover, prerequisites for a large-scale expansion into outer space will be created as well.
Key elements of the project in the future
• International social movement
• social network immortal.me
• charitable foundation "Global Future 2045" (Foundation 2045)
• scientific research centre "Immortality"
• business incubator
• University of "Immortality"
• annual award for contribution to the realization of the project of "Immortality”.