/ News

30.07.2015

Research grasps how brain plans gripping motion

A new study significantly advances neuroscientists' understanding of how a region of the brain formulates plans for the hand to grip an object. The findings could lead to direct application to improving brain-computer interface control over robotic arms and hands.

With the results of a new study, neuroscientists have a firmer grasp on the way the brain formulates commands for the hand to grip an object. The advance could lead to improvements in future brain-computer interfaces that provide people with severe paralysis a means to control robotic arms and hands using their thoughts.

The key finding of a research team based at Brown University is that neurons in the area of the brain responsible for planning grasping motions retain information about the object to be gripped as they make their movement plan. The collective neural activity therefore looks different when executing the same grip on one object versus another. This may help the brain design unique patterns when similar actions are performed in different environments.

For designers of brain-computer interfaces, whose goal is to translate neural patterns into commands for a prosthetic device, it may be important to know that the emerging plan to execute a "power grip" style, for example, may look different when the object is a hammer versus a soda can. Because the information is distributed across many neurons in a local network, it is possible to have many of these special object-action representations together.

"Many groups have looked at encoding of different grips and different hand positions," said lead and corresponding author Carlos Vargas-Irwin, an investigator in the lab of senior author John Donoghue, the Henry Merritt Wriston Professor of Neuroscience and Engineering. "Typically what's studied is the relationship between a single object and a grip associated with it. What had not been done before is to investigate how the brain can formulate different grips on the same object or the same grip on different objects."

When his team did that, they found that the brain has many ways to formulate a grip command, and those seem to be influenced by what it's gripping.

"You can have the same movement resulting from very different activity patterns within the context of different objects," Vargas-Irwin said. "If we are trying to build a [brain-computer interface] decoder we need to take into account the bigger context of what the target of the movement is."

Probing for patterns

The research team made its findings by recording and analyzing the neural activity in the ventral premotor cortex of three trained rhesus macaques as they participated in a series of grip tasks. Over about a five-second span, the researchers would present one of two different objects. Then they'd show a red or yellow light to signal which of two different grips to use for each, and then flash a green light to signal that the grip should begin. After analysis, the researchers were able to observe how the patterns of neural activity were changing at each stage of each task.

Vargas-Irwin used an analysis technique he developed, called SSIMS, that can accurately detect patterns of activity in collections of neurons without relying on any assumptions about what the brain is trying to do. The patterns can be distinguished based on differences in their activity and can cluster together based on their similarities without the researchers imposing their own view of events going on in the task.

What the analysis showed is that neurons in the ventral premotor cortex follow patterns that differentiate objects and actions. They began to show distinct, identifiable patterns of activity as soon as the object was presented but the animal knew how it was supposed to grasp that object. By the time grips were actually made, the patterns had become so distinct that all four object-grip combinations could be distinctly identified with about 95 percent accuracy.

"We just look at the neural activity patterns in and of themselves and the relationships between them; we can quantify their relative similarity and group them without any knowledge of the what the kinematics are," Vargas-Irwin said. "In this particular experiment we see that we can subdivide the neural activity patterns into groups that correspond to the basic grips and objects."

This was somewhat surprising, Donoghue added, because this "motor" part of the brain is thought to be near the end stages of making a movement, well after sensory processing like object discrimination has been completed. The new findings suggest that this isn't so.

Meaning and more work

The results of the study demonstrate that objects have a significant effect on the evolution of the grip plan. That the brain can produce a variety of activity patterns and still arrive at an appropriate grip plan suggests the brian is flexible enough to handle a wide variety of object contexts and can do so with a local network of neurons.

It's also apparent in the study that the plan to grip an object evolves well in advance of actual execution. Early interpretation of grip planning, including accounting for the distinctive form that plans take in the context of different object, could allow a brain computer interface decoder to get a motion command to a prosthesis more quickly and accurately with information about what is to be gripped, Vargas-Irwin said.

Vargas-Irwin and his colleagues are continuing with experiments to determine how well the findings can be generalized -- to a wider variety of objects, for instance -- and how much the structure of the experiments and training affects the neural patterns.

Vargas-Irwin said he is optimistic that the findings could ultimately have direct application to improving brain-computer interface design and performance for patients with severe paralysis.

Story Source:

The above post is reprinted from materials provided by Brown University.Note: Materials may be edited for content and length.

Journal Reference:

  1. Carlos E. Vargas-Irwin, Lachlan Franquemont, Michael J. Black, and John P. Donoghue. Linking Objects to Actions: Encoding of Target Object and Grasping Strategy in Primate Ventral Premotor Cortex. Journal of Neuroscience, 2015 DOI:10.%u200B1523/%u200BJNEUROSCI.%u200B1574-15.%u200B2015

Source: http://www.sciencedaily.com/releases/2015/07/150728194932.htm




/ About us

Founded by Russian entrepreneur Dmitry Itskov in February 2011 with the participation of leading Russian specialists in the field of neural interfaces, robotics, artificial organs and systems.

The main goals of the 2045 Initiative: the creation and realization of a new strategy for the development of humanity which meets global civilization challenges; the creation of optimale conditions promoting the spiritual enlightenment of humanity; and the realization of a new futuristic reality based on 5 principles: high spirituality, high culture, high ethics, high science and high technologies. 

The main science mega-project of the 2045 Initiative aims to create technologies enabling the transfer of a individual’s personality to a more advanced non-biological carrier, and extending life, including to the point of immortality. We devote particular attention to enabling the fullest possible dialogue between the world’s major spiritual traditions, science and society.

A large-scale transformation of humanity, comparable to some of the major spiritual and sci-tech revolutions in history, will require a new strategy. We believe this to be necessary to overcome existing crises, which threaten our planetary habitat and the continued existence of humanity as a species. With the 2045 Initiative, we hope to realize a new strategy for humanity's development, and in so doing, create a more productive, fulfilling, and satisfying future.

The "2045" team is working towards creating an international research center where leading scientists will be engaged in research and development in the fields of anthropomorphic robotics, living systems modeling and brain and consciousness modeling with the goal of transferring one’s individual consciousness to an artificial carrier and achieving cybernetic immortality.

An annual congress "The Global Future 2045" is organized by the Initiative to give platform for discussing mankind's evolutionary strategy based on technologies of cybernetic immortality as well as the possible impact of such technologies on global society, politics and economies of the future.

 

Future prospects of "2045" Initiative for society

2015-2020

The emergence and widespread use of affordable android "avatars" controlled by a "brain-computer" interface. Coupled with related technologies “avatars’ will give people a number of new features: ability to work in dangerous environments, perform rescue operations, travel in extreme situations etc.
Avatar components will be used in medicine for the rehabilitation of fully or partially disabled patients giving them prosthetic limbs or recover lost senses.

2020-2025

Creation of an autonomous life-support system for the human brain linked to a robot, ‘avatar’, will save people whose body is completely worn out or irreversibly damaged. Any patient with an intact brain will be able to return to a fully functioning  bodily life. Such technologies will  greatly enlarge  the possibility of hybrid bio-electronic devices, thus creating a new IT revolution and will make  all  kinds of superimpositions of electronic and biological systems possible.

2030-2035

Creation of a computer model of the brain and human consciousness  with the subsequent development of means to transfer individual consciousness  onto an artificial carrier. This development will profoundly change the world, it will not only give everyone the possibility of  cybernetic immortality but will also create a friendly artificial intelligence,  expand human capabilities  and provide opportunities for ordinary people to restore or modify their own brain multiple times.  The final result  at this stage can be a real revolution in the understanding of human nature that will completely change the human and technical prospects for humanity.

2045

This is the time when substance-independent minds will receive new bodies with capacities far exceeding those of ordinary humans. A new era for humanity will arrive!  Changes will occur in all spheres of human activity – energy generation, transportation, politics, medicine, psychology, sciences, and so on.

Today it is hard to imagine a future when bodies consisting of nanorobots  will become affordable  and capable of taking any form. It is also hard to imagine body holograms featuring controlled matter. One thing is clear however:  humanity, for the first time in its history, will make a fully managed evolutionary transition and eventually become a new species. Moreover,  prerequisites for a large-scale  expansion into outer space will be created as well.

 

Key elements of the project in the future

• International social movement
• social network immortal.me
• charitable foundation "Global Future 2045" (Foundation 2045)
• scientific research centre "Immortality"
• business incubator
• University of "Immortality"
• annual award for contribution to the realization of  the project of "Immortality”.

Login as user:

If you are registered on one of these websites, you can get a quick registration. To do this, please select the wesite and follow the instructions.

Login to 2045.com

Email:
You do not have login to 2045.com? Register!
Dear colleagues, partners, friends! If you support ​the 2045 strategic social initiative goals and values, please register on our website.

Quick registration:

If you are registered on one of these websites, you can get a quick registration. To do this, please select the wesite and follow the instructions.

Registration

Name:
Surname:
Field of activity:
Email:
Password:
Enter the code shown:

Show another picture

Восстановить пароль

Email:

Text:
Contact Email:
Attachment ( not greater than 5 Mb. ):
 
Close
avatar project milestones