/ News
Study links two human brains for question-and-answer experiment
Imagine a question-and-answer game played by two people who are not in the same place and not talking to each other. Round after round, one player asks a series of questions and accurately guesses the object the other is thinking about. Sci-fi? Mind-reading superpowers? Not quite.
University of Washington researchers recently used a direct brain-to-brain connection to enable pairs of participants to play a question-and-answer game by transmitting signals from one brain to the other over the Internet. The experiment, detailed today in PLOS ONE, is thought to be the first to show that two brains can be directly linked to allow one person to accurately guess what's on another person's mind.
"This is the most complex brain-to-brain experiment, I think, that's been done to date in humans," said lead author Andrea Stocco, an assistant professor of psychology and a researcher at UW's Institute for Learning & Brain Sciences.
"It uses conscious experiences through signals that are experienced visually, and it requires two people to collaborate," Stocco said.
Here's how it works: The first participant, or "respondent," wears a cap connected to an electroencephalography (EEG) machine that records electrical brain activity. The respondent is shown an object (for example, a dog) on a computer screen, and the second participant, or "inquirer," sees a list of possible objects and associated questions. With the click of a mouse, the inquirer sends a question and the respondent answers "yes" or "no" by focusing on one of two flashing LED lights attached to the monitor, which flash at different frequencies.
A "no" or "yes" answer both send a signal to the inquirer via the Internet and activate a magnetic coil positioned behind the inquirer's head. But only a "yes" answer generates a response intense enough to stimulate the visual cortex and cause the inquirer to see a flash of light known as a "phosphene." The phosphene—which might look like a blob, waves or a thin line—is created through a brief disruption in the visual field and tells the inquirer the answer is yes. Through answers to these simple yes or no questions, the inquirer identifies the correct item.
The experiment was carried out in dark rooms in two UW labs located almost a mile apart and involved five pairs of participants, who played 20 rounds of the question-and-answer game. Each game had eight objects and three questions that would solve the game if answered correctly. The sessions were a random mixture of 10 real games and 10 control games that were structured the same way.
The researchers took steps to ensure participants couldn't use clues other than direct brain communication to complete the game. Inquirers wore earplugs so they couldn't hear the different sounds produced by the varying stimulation intensities of the "yes" and "no" responses. Since noise travels through the skull bone, the researchers also changed the stimulation intensities slightly from game to game and randomly used three different intensities each for "yes" and "no" answers to further reduce the chance that sound could provide clues.
The researchers also repositioned the coil on the inquirer's head at the start of each game, but for the control games, added a plastic spacer undetectable to the participant that weakened the magnetic field enough to prevent the generation of phosphenes. Inquirers were not told whether they had correctly identified the items, and only the researcher on the respondent end knew whether each game was real or a control round.
"We took many steps to make sure that people were not cheating," Stocco said.
Participants were able to guess the correct object in 72 percent of the real games, compared with just 18 percent of the control rounds. Incorrect guesses in the real games could be caused by several factors, the most likely being uncertainty about whether a phosphene had appeared.
"They have to interpret something they're seeing with their brains," said co-author Chantel Prat, a faculty member at the Institute for Learning & Brain Sciences and a UW associate professor of psychology. "It's not something they've ever seen before."
Errors can also result from respondents not knowing the answers to questions or focusing on both answers, or by the brain signal transmission being interrupted by hardware problems.
"While the flashing lights are signals that we're putting into the brain, those parts of the brain are doing a million other things at any given time too," Prat said.
The study builds on the UW team's initial experiment in 2013, when it was the first to demonstrate a direct brain-to-brain connection between humans. Other scientists have connected the brains of rats and monkeys, and transmitted brain signals from a human to a rat, using electrodes inserted into animals' brains. In the 2013 experiment, the UW team used noninvasive technology to send a person's brain signals over the Internet to control the hand motions of another person.
The first experiment evolved out of research by co-author Rajesh Rao, a UW professor of computer science and engineering, on brain-computer interfaces that enable people to activate devices with their minds. In 2011, Rao began collaborating with Stocco and Prat to determine how to link two human brains together.
In 2014, the researchers received a $1 million grant from the W.M. Keck Foundation that allowed them to broaden their experiments to decode more complex interactions and brain processes. They are now exploring the possibility of "brain tutoring," transferring signals directly from healthy brains to ones that are developmentally impaired or impacted by external factors such as a stroke or accident, or simply to transfer knowledge from teacher to pupil.
The team is also working on transmitting brain states—for example, sending signals from an alert person to a sleepy one, or from a focused student to one who has attention deficit hyperactivity disorder, or ADHD.
"Imagine having someone with ADHD and a neurotypical student," Prat said. "When the non-ADHD student is paying attention, the ADHD student's brain gets put into a state of greater attention automatically."
Many technological advancements over the past century, from the telegraph to the Internet, were created to facilitate communication between people. The UW team's work takes a different approach, using technology to strip away the need for such intermediaries.
"Evolution has spent a colossal amount of time to find ways for us and other animals to take information out of our brains and communicate it to other animals in the forms of behavior, speech and so on," Stocco said. "But it requires a translation. We can only communicate part of whatever our brain processes.
"What we are doing is kind of reversing the process a step at a time by opening up this box and taking signals from the brain and with minimal translation, putting them back in another person's brain," he said.
Explore further: Researcher controls colleague's motions in first human brain-to-brain interface (w/ Video)
Journal reference: PLoS ONE
Provided by: University of Washington
Source: http://medicalxpress.com/news/2015-09-links-human-brains-question-and-answer.html
/ About us
Founded by Russian entrepreneur Dmitry Itskov in February 2011 with the participation of leading Russian specialists in the field of neural interfaces, robotics, artificial organs and systems.
The main goals of the 2045 Initiative: the creation and realization of a new strategy for the development of humanity which meets global civilization challenges; the creation of optimale conditions promoting the spiritual enlightenment of humanity; and the realization of a new futuristic reality based on 5 principles: high spirituality, high culture, high ethics, high science and high technologies.
The main science mega-project of the 2045 Initiative aims to create technologies enabling the transfer of a individual’s personality to a more advanced non-biological carrier, and extending life, including to the point of immortality. We devote particular attention to enabling the fullest possible dialogue between the world’s major spiritual traditions, science and society.
A large-scale transformation of humanity, comparable to some of the major spiritual and sci-tech revolutions in history, will require a new strategy. We believe this to be necessary to overcome existing crises, which threaten our planetary habitat and the continued existence of humanity as a species. With the 2045 Initiative, we hope to realize a new strategy for humanity's development, and in so doing, create a more productive, fulfilling, and satisfying future.
The "2045" team is working towards creating an international research center where leading scientists will be engaged in research and development in the fields of anthropomorphic robotics, living systems modeling and brain and consciousness modeling with the goal of transferring one’s individual consciousness to an artificial carrier and achieving cybernetic immortality.
An annual congress "The Global Future 2045" is organized by the Initiative to give platform for discussing mankind's evolutionary strategy based on technologies of cybernetic immortality as well as the possible impact of such technologies on global society, politics and economies of the future.
Future prospects of "2045" Initiative for society
2015-2020
The emergence and widespread use of affordable android "avatars" controlled by a "brain-computer" interface. Coupled with related technologies “avatars’ will give people a number of new features: ability to work in dangerous environments, perform rescue operations, travel in extreme situations etc.
Avatar components will be used in medicine for the rehabilitation of fully or partially disabled patients giving them prosthetic limbs or recover lost senses.
2020-2025
Creation of an autonomous life-support system for the human brain linked to a robot, ‘avatar’, will save people whose body is completely worn out or irreversibly damaged. Any patient with an intact brain will be able to return to a fully functioning bodily life. Such technologies will greatly enlarge the possibility of hybrid bio-electronic devices, thus creating a new IT revolution and will make all kinds of superimpositions of electronic and biological systems possible.
2030-2035
Creation of a computer model of the brain and human consciousness with the subsequent development of means to transfer individual consciousness onto an artificial carrier. This development will profoundly change the world, it will not only give everyone the possibility of cybernetic immortality but will also create a friendly artificial intelligence, expand human capabilities and provide opportunities for ordinary people to restore or modify their own brain multiple times. The final result at this stage can be a real revolution in the understanding of human nature that will completely change the human and technical prospects for humanity.
2045
This is the time when substance-independent minds will receive new bodies with capacities far exceeding those of ordinary humans. A new era for humanity will arrive! Changes will occur in all spheres of human activity – energy generation, transportation, politics, medicine, psychology, sciences, and so on.
Today it is hard to imagine a future when bodies consisting of nanorobots will become affordable and capable of taking any form. It is also hard to imagine body holograms featuring controlled matter. One thing is clear however: humanity, for the first time in its history, will make a fully managed evolutionary transition and eventually become a new species. Moreover, prerequisites for a large-scale expansion into outer space will be created as well.
Key elements of the project in the future
• International social movement
• social network immortal.me
• charitable foundation "Global Future 2045" (Foundation 2045)
• scientific research centre "Immortality"
• business incubator
• University of "Immortality"
• annual award for contribution to the realization of the project of "Immortality”.