/ News
Brain monitoring takes a leap out of the lab
Bioengineers and cognitive scientists have developed the first portable, 64-channel wearable brain activity monitoring system that's comparable to state-of-the-art equipment found in research laboratories.
The system is a better fit for real-world applications because it is equipped with dry EEG sensors that are easier to apply than wet sensors, while still providing high-density brain activity data. The system comprises a 64-channel dry-electrode wearable EEG headset and a sophisticated software suite for data interpretation and analysis. It has a wide range of applications, from research, to neuro-feedback, to clinical diagnostics.
The researchers' goal is to get EEG out of the laboratory setting, where it is currently confined by wet EEG methods. In the future, scientists envision a world where neuroimaging systems work with mobile sensors and smart phones to track brain states throughout the day and augment the brain's capabilities.
"This is going to take neuroimaging to the next level by deploying on a much larger scale," said Mike Yu Chi, a Jacobs School alumnus and CTO of Cognionics who led the team that developed the headset used in the study. "You will be able to work in subjects' homes. You can put this on someone driving."
The researchers from the Jacobs School of Engineering and Institute for Neural Computation at UC San Diego detailed their findings in an article of the Special Issue on Wearable Technologies published recently in IEEE Transactions on Biomedical Engineering.
They also envision a future when neuroimaging can be used to bring about new therapies for neurological disorders. "We will be able to prompt the brain to fix its own problems," said Gert Cauwenberghs, a bioengineering professor at the Jacobs School and a principal investigator of the research supported in part by a five-year Emerging Frontiers of Research Innovation grant from the National Science Foundation. "We are trying to get away from invasive technologies, such as deep brain stimulation and prescription medications, and instead start up a repair process by using the brain's synaptic plasticity."
In 10 years, using a brain-machine interface might become as natural as using your smartphone is today, said Tim Mullen, a UC San Diego alumnus, now CEO of Qusp and lead author on the study. Mullen, a former researcher at the Swartz Center for Computational Neuroscience at UC San Diego, led the team that developed the software used in the study with partial funding from the Army Research Lab.
For this vision of the future to become a reality, sensors will need to become not only wearable but also comfortable, and algorithms for data analysis will need to be able to cut through noise to extract meaningful data. The paper, titled "Real-time Neuroimaging and Cognitive Monitoring Using Wearable Dry EEG," outlines some significant first steps in that direction.
EGG headset
The EEG headset developed by Chi and his team has an octopus-like shape, in which each arm is elastic, so that it fits on many different kinds of head shapes. The sensors at the end of each arm are designed to make optimal contact with the scalp while adding as little noise in the signal as possible.
Researchers spent four years perfecting the recipe for the sensors' materials. Sensors designed to work on a subject's hair are made of a mix of silver and carbon deposited on a flexible substrate. This material allows sensors to remain flexible and durable while still conducting high-quality signals--a silver/silver-chloride coating is key here. Sensors designed to work on bare skin are made from a hydrogel encased inside a conductive membrane. These sensors are mounted inside a pod equipped with an amplifier, which helps boost signal quality while shielding the sensors from interferences from electrical equipment and other electronics.
Next steps include improving the headset's performance while subjects are moving. The device can reliably capture signals while subjects walk but less so during more strenuous activities such as running. Electronics also need improvement to function for longer time periods--days and even weeks instead of hours.
Software and data analysis
The data that the headset captured were analyzed with software developed by Mullen and Christian Kothe, another former researcher at the Swartz Center for Computational Neuroscience and currently CTO of Qusp. First, brain signals needed to be separated from noise in the EEG data. The tiny electrical currents originating from the brain are often contaminated by high amplitude artifacts generated when subjects move, speak or even blink. The researchers designed an algorithm that separates the EEG data in real-time into different components that are statistically unrelated to one another. It then compared these elements with clean data obtained, for instance, when a subject is at rest. Abnormal data were labeled as noise and discarded. "The algorithm attempts to remove as much of the noise as possible while preserving as much of the brain signal as possible," said Mullen.
But the analysis didn't stop there. Researchers used information about the brain's known anatomy and the data they collected to find out where the signals come from inside the brain. They also were able to track, in real time, how signals from different areas of the brain interact with one another, building an ever-changing network map of brain activity. They then used machine learning to connect specific network patterns in brain activity to cognition and behavior.
"A Holy Grail in our field is to track meaningful changes in distributed brain networks at the 'speed of thought'," Mullen said. "We're closer to that goal, but we're not quite there yet."
Start-ups
Both Chi and Mullen have created start-ups focused on commercialization of brain technology, including some components featured in this study. Chi's company, Cognionics, sells the headset to research groups. The device also is popular with specialists in neuro-feedback, who map the brain to later influence behavior. The ultimate goal is to get the headset into the clinic to help diagnose a range of conditions, such as strokes and seizures.
Mullen's start-up, Qusp, has developed NeuroScale, a cloud-based software platform that provides continuous real-time interpretation of brain and body signals through an Internet application program interface. The goal is to enable brain-computer interface and advanced signal processing methods to be easily integrated with various everyday applications and wearable devices.
Under joint DARPA funding, Cognionics is creating an improved EEG system, while Qusp is developing an easy-to-use graphical software environment for rapid design and application of brain signal analysis pipelines.
"These entrepreneurial efforts are integral to the success of the Jacobs School and the Institute for Neural Computation to help take neurotechnology from the lab to practical uses in cognitive and clinical applications," said Cauwenberghs, who is co-founder of Cognionics and serves on its Scientific Advisory Board.
###
Mullen is also affiliated with the Swartz Center for Computational Neuroscience at the Institute of Neural Computation at UC San Diego, as are co-authors Kothe, Alejandro Ojeda, Director Scott Makeig, and Co-director Tzyy-Ping Jung. Co-author Trevor Kerth is now pursuing industrial design at Kingston University, London.
More info: http://tbme.embs.org/2015/10/22/real-time-neuroimaging-cognitive-monitoring-using-wearable-dry-eeg/
Full paper: http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=7274673
Source: http://www.eurekalert.org/pub_releases/2016-01/uoc--bmt011216.php
/ About us
Founded by Russian entrepreneur Dmitry Itskov in February 2011 with the participation of leading Russian specialists in the field of neural interfaces, robotics, artificial organs and systems.
The main goals of the 2045 Initiative: the creation and realization of a new strategy for the development of humanity which meets global civilization challenges; the creation of optimale conditions promoting the spiritual enlightenment of humanity; and the realization of a new futuristic reality based on 5 principles: high spirituality, high culture, high ethics, high science and high technologies.
The main science mega-project of the 2045 Initiative aims to create technologies enabling the transfer of a individual’s personality to a more advanced non-biological carrier, and extending life, including to the point of immortality. We devote particular attention to enabling the fullest possible dialogue between the world’s major spiritual traditions, science and society.
A large-scale transformation of humanity, comparable to some of the major spiritual and sci-tech revolutions in history, will require a new strategy. We believe this to be necessary to overcome existing crises, which threaten our planetary habitat and the continued existence of humanity as a species. With the 2045 Initiative, we hope to realize a new strategy for humanity's development, and in so doing, create a more productive, fulfilling, and satisfying future.
The "2045" team is working towards creating an international research center where leading scientists will be engaged in research and development in the fields of anthropomorphic robotics, living systems modeling and brain and consciousness modeling with the goal of transferring one’s individual consciousness to an artificial carrier and achieving cybernetic immortality.
An annual congress "The Global Future 2045" is organized by the Initiative to give platform for discussing mankind's evolutionary strategy based on technologies of cybernetic immortality as well as the possible impact of such technologies on global society, politics and economies of the future.
Future prospects of "2045" Initiative for society
2015-2020
The emergence and widespread use of affordable android "avatars" controlled by a "brain-computer" interface. Coupled with related technologies “avatars’ will give people a number of new features: ability to work in dangerous environments, perform rescue operations, travel in extreme situations etc.
Avatar components will be used in medicine for the rehabilitation of fully or partially disabled patients giving them prosthetic limbs or recover lost senses.
2020-2025
Creation of an autonomous life-support system for the human brain linked to a robot, ‘avatar’, will save people whose body is completely worn out or irreversibly damaged. Any patient with an intact brain will be able to return to a fully functioning bodily life. Such technologies will greatly enlarge the possibility of hybrid bio-electronic devices, thus creating a new IT revolution and will make all kinds of superimpositions of electronic and biological systems possible.
2030-2035
Creation of a computer model of the brain and human consciousness with the subsequent development of means to transfer individual consciousness onto an artificial carrier. This development will profoundly change the world, it will not only give everyone the possibility of cybernetic immortality but will also create a friendly artificial intelligence, expand human capabilities and provide opportunities for ordinary people to restore or modify their own brain multiple times. The final result at this stage can be a real revolution in the understanding of human nature that will completely change the human and technical prospects for humanity.
2045
This is the time when substance-independent minds will receive new bodies with capacities far exceeding those of ordinary humans. A new era for humanity will arrive! Changes will occur in all spheres of human activity – energy generation, transportation, politics, medicine, psychology, sciences, and so on.
Today it is hard to imagine a future when bodies consisting of nanorobots will become affordable and capable of taking any form. It is also hard to imagine body holograms featuring controlled matter. One thing is clear however: humanity, for the first time in its history, will make a fully managed evolutionary transition and eventually become a new species. Moreover, prerequisites for a large-scale expansion into outer space will be created as well.
Key elements of the project in the future
• International social movement
• social network immortal.me
• charitable foundation "Global Future 2045" (Foundation 2045)
• scientific research centre "Immortality"
• business incubator
• University of "Immortality"
• annual award for contribution to the realization of the project of "Immortality”.