/ News


Self-directed robot can identify objects

"That is a ball." "I do believe that is a cone." "Seems like a wonderful book." The voice is mechanical and flat, and anyone offering such banal commentary and sounding so bored would surely bomb in a job interview. But in this case, the observations are impressive. They're made by what looks like a two-foot-tall stack of hors d'oeuvre trays on wheels, careening around the floor and proclaiming its discoveries as its "eye," an attached camera, falls on them.

This robot has learned to recognize these specific objects—and to steer around obstacles, albeit clumsily—without human guidance. Its camera sends information about what it sees to a laptop sitting atop the robot; the laptop in turn communicates with a laboratory desktop, whose monitor flashes whatever the robot's camera catches.

"It's almost self-thinking" in its ability to get around roadblocks, says Emily Fitzgerald (ENG'16), who bestowed the 'bot with a brain as her summer 2015 project with Boston University's Undergraduate Research Opportunities Program (UROP), which provides funding for faculty-mentored research by undergrad students. More important than the robot's autonomous navigation, she says, is its ability to recognize specific objects.

Such self-guiding, object-spotting robots are a Holy Grail for scientists, with potential applications that include exploring distant planets' landscapes. In Fitzgerald's case, she used a deep neural network, a form of artificial intelligence that simulates brain neurons. Deep neural networks process huge amounts of data to solve problems, like recognizing a ball or cone.

"There's an algorithm that will take a ton of pictures of one object and will put it in and compile it all," says Fitzgerald. "Then we basically assign a number to it." The robot "will come upon an object and it will say, 'Oh, there's an object in front of me, let me think about it.' It will…find a picture that corresponds with the object, pick that number, and then it will be able to use that as a reference, so it can exclaim, 'Oh, it's a ball,' 'It's a cone,' or whatever object I had decided to teach it."

Massimiliano Versace (GRS'07), a BU College of Arts & Sciences research assistant professor and director of BU's Neuromorphics Lab, oversaw Fitzgerald's UROP project, and she had help from Lucas Neves (ENG'16), a volunteer in Versace's lab, and Matthew Luciw, a visiting researcher at BU's Center for Computational Neuroscience & Neural Technology.

Asked how hard it was to train their metallic pupil in object recognition, the team members laugh. "There were quite a few times where we did despair a little bit that, you know, this wasn't going to work," says Fitzgerald, who first had to master an unfamiliar programming language. Then the team needed to make sure that the array of different software in the project would work together "without crashing the system," she says.

Often, the software wasn't compatible, resulting in a somewhat ditsy robot. "Most of the time, it just didn't start," Neves says, ruefully recalling those tough moments. It also could get lost: sensors in its wheels tell the robot how far it's traveled. But "the wheels weren't moving at a constant rate, so whenever the robot would shoot off, it would think it had gone farther than it had because the wheels spun faster," says Fitzgerald.

So the Terminator it isn't. Whether Fitzgerald's project will yield a commercial application someday remains an open question, says Versace, but he has no doubt about the viability of this type of work. Versace heads Neurala, a BU spin-off company, and members of his lab met recently with NASA to discuss related research.

As for Fitzgerald, who was turned on to engineering after excelling at physics and math in high school, she says the project persuaded her to pursue a career in bioimaging. Someday, she says, robotic surgical devices running off neural networks will detect objects in human patients.

"I've actually taken this project and I've said, OK, what else can I do with it in the biomedical setting as well?" she says. "It's really shaped how I've thought about my future going forward."

 Explore further: Researchers develop a robot that can learn to navigate through its environment guided by external stimuli (w/ Video)

Source: http://phys.org/news/2016-02-self-directed-robot.html

/ About us

Founded by Russian entrepreneur Dmitry Itskov in February 2011 with the participation of leading Russian specialists in the field of neural interfaces, robotics, artificial organs and systems.

The main goals of the 2045 Initiative: the creation and realization of a new strategy for the development of humanity which meets global civilization challenges; the creation of optimale conditions promoting the spiritual enlightenment of humanity; and the realization of a new futuristic reality based on 5 principles: high spirituality, high culture, high ethics, high science and high technologies. 

The main science mega-project of the 2045 Initiative aims to create technologies enabling the transfer of a individual’s personality to a more advanced non-biological carrier, and extending life, including to the point of immortality. We devote particular attention to enabling the fullest possible dialogue between the world’s major spiritual traditions, science and society.

A large-scale transformation of humanity, comparable to some of the major spiritual and sci-tech revolutions in history, will require a new strategy. We believe this to be necessary to overcome existing crises, which threaten our planetary habitat and the continued existence of humanity as a species. With the 2045 Initiative, we hope to realize a new strategy for humanity's development, and in so doing, create a more productive, fulfilling, and satisfying future.

The "2045" team is working towards creating an international research center where leading scientists will be engaged in research and development in the fields of anthropomorphic robotics, living systems modeling and brain and consciousness modeling with the goal of transferring one’s individual consciousness to an artificial carrier and achieving cybernetic immortality.

An annual congress "The Global Future 2045" is organized by the Initiative to give platform for discussing mankind's evolutionary strategy based on technologies of cybernetic immortality as well as the possible impact of such technologies on global society, politics and economies of the future.


Future prospects of "2045" Initiative for society


The emergence and widespread use of affordable android "avatars" controlled by a "brain-computer" interface. Coupled with related technologies “avatars’ will give people a number of new features: ability to work in dangerous environments, perform rescue operations, travel in extreme situations etc.
Avatar components will be used in medicine for the rehabilitation of fully or partially disabled patients giving them prosthetic limbs or recover lost senses.


Creation of an autonomous life-support system for the human brain linked to a robot, ‘avatar’, will save people whose body is completely worn out or irreversibly damaged. Any patient with an intact brain will be able to return to a fully functioning  bodily life. Such technologies will  greatly enlarge  the possibility of hybrid bio-electronic devices, thus creating a new IT revolution and will make  all  kinds of superimpositions of electronic and biological systems possible.


Creation of a computer model of the brain and human consciousness  with the subsequent development of means to transfer individual consciousness  onto an artificial carrier. This development will profoundly change the world, it will not only give everyone the possibility of  cybernetic immortality but will also create a friendly artificial intelligence,  expand human capabilities  and provide opportunities for ordinary people to restore or modify their own brain multiple times.  The final result  at this stage can be a real revolution in the understanding of human nature that will completely change the human and technical prospects for humanity.


This is the time when substance-independent minds will receive new bodies with capacities far exceeding those of ordinary humans. A new era for humanity will arrive!  Changes will occur in all spheres of human activity – energy generation, transportation, politics, medicine, psychology, sciences, and so on.

Today it is hard to imagine a future when bodies consisting of nanorobots  will become affordable  and capable of taking any form. It is also hard to imagine body holograms featuring controlled matter. One thing is clear however:  humanity, for the first time in its history, will make a fully managed evolutionary transition and eventually become a new species. Moreover,  prerequisites for a large-scale  expansion into outer space will be created as well.


Key elements of the project in the future

• International social movement
• social network immortal.me
• charitable foundation "Global Future 2045" (Foundation 2045)
• scientific research centre "Immortality"
• business incubator
• University of "Immortality"
• annual award for contribution to the realization of  the project of "Immortality”.

Login as user:

If you are registered on one of these websites, you can get a quick registration. To do this, please select the wesite and follow the instructions.

Login to 2045.com

You do not have login to 2045.com? Register!
Dear colleagues, partners, friends! If you support ​the 2045 strategic social initiative goals and values, please register on our website.

Quick registration:

If you are registered on one of these websites, you can get a quick registration. To do this, please select the wesite and follow the instructions.


Field of activity:
Enter the code shown:

Show another picture

Восстановить пароль


Contact Email:
Attachment ( not greater than 5 Mb. ):
avatar project milestones