/ News


A strategy for 'convergence' research to transform biomedicine

What if lost limbs could be regrown? Cancers detected early with blood or urine tests, instead of invasive biopsies? Drugs delivered via nanoparticles to specific tissues or even cells, minimizing unwanted side effects? While such breakthroughs may sound futuristic, scientists are already exploring these and other promising techniques.

But the realization of these transformative advances is not guaranteed. The key to bringing them to fruition, a landmark new report argues, will be strategic and sustained support for "convergence": the merging of approaches and insights from historically distinct disciplines such as engineering, physics, computer science, chemistry, mathematics, and the life sciences.

The report, "Convergence: The Future of Health," was co-chaired by Tyler Jacks, the David H. Koch Professor of Biology and director of MIT's Koch Institute for Integrative Cancer Research; Susan Hockfield, noted neuroscientist and president emerita of MIT; and Phillip Sharp, Institute Professor at MIT and Nobel laureate, and will be presented at the National Academies of Sciences, Engineering, and Medicine in Washington on June 24.

The report draws on insights from several dozen expert participants at two workshops, as well as input from scientists and researchers across academia, industry, and government. Their efforts have produced a wide range of recommendations for advancing convergence research, but the report emphasizes one critical barrier above all: the shortage of federal funding for convergence fields.

"Convergence science has advanced across many fronts, from nanotechnology to regenerative tissue," says Sharp. "Although the promise has been recognized, the funding allocated for convergence research in biomedical science is small and needs to be expanded. In fact, there is no federal agency with the responsibility to fund convergence in biomedical research."

The National Institutes of Health (NIH) are the primary source of research funding for biomedical science in the United States. In 2015, only 3 percent of all principal investigators funded by NIH were from departments of engineering, bioengineering, physics, biophysics, or mathematics. Accordingly, the report's authors call for increasing NIH funding for convergence research to at least 20 percent of the agency's budget.

Progress and potential

In 2011, MIT released a white paper that outlined the concept of convergence. More than just interdisciplinary research, convergence entails the active integration of these diverse modes of inquiry into a unified pursuit of advances that will transform health and other sectors, from agriculture to energy.

The new report lays out a more comprehensive vision of what convergence-based research could achieve, as well as the concrete steps required to enable these advances.

"The 2011 report argued that convergence was the next revolution in health research, following molecular biology and genomics," says Jacks. "That report helped identify the importance and growing centrality of convergence for health research. This report is different. It starts us off on a true strategy for convergence-based research in health."

The report released today makes clear that, despite such obstacles, this "third revolution" is already well underway. Convergence-based research has become standard practice at MIT, most notably at the Koch Institute and the Institute for Medical Engineering and Science.

"About a third of all MIT engineers are involved in some aspect of convergence," says Sharp. "These faculty are having an enormous impact on biomedical science and this will only grow in the future. Other universities are beginning to evolve along similar paths."

Indeed, convergence-based approaches are becoming more common at many other pioneering university programs, including the Wyss Institute for Biologically Inspired Engineering at Harvard University, and the University of Chicago's new Institute for Molecular Engineering, among others.

The report also points to several new federal initiatives that are harnessing the convergence research model to solve some of society's most pressing health challenges.

For example, the Brain Research through Advancing Innovative Neurotechnologies (BRAIN) Initiative, launched by the Obama administration in 2013, seeks to improve our understanding of how individual cells and neural circuits interact, in order to develop new ways to treat and prevent brain disorders. And the National Cancer Moonshot Initiative, launched earlier this year to accelerate research to develop cancer vaccines and early detection methods and genomic tumor analysis, will also operate largely using convergence tools and approaches.

But the integration of new technologies and methods from genomics, information science, nanotechnology, and molecular biology could take us even farther.

The report outlines three major disease areas -- brain disorders, infectious diseases and immunology, and cancer -- and promising convergence-based approaches to tackling them. It also presents case studies of four emerging technology categories: advanced imaging in the body, nanotechnology for drug and therapy delivery, regenerative engineering, and big data and health information technology.

A sampling gives a sense of their transformative potential. Convergence techniques could enable rewiring the genes of mosquitoes to eliminate Zika, dengue, and malaria. They could help solve the emerging threat of drug-resistant bacterial strains, which infect over two million people in the U.S. every year. Convergence-based immunotherapy could activate a person's immune system to fight cancer, reprogramming a person's T-cells or antibodies to find and attack tumor cells. Big-data techniques could be used to generate and analyze huge amounts of data on people's exposures to industrial chemicals, environmental toxins, and infectious agents, creating a new field of "chemistry of nurture," to complement the "chemistry of nature" developed by the documentation of the human genome.

"Convergence might come just in time," says Hockfield, "given our rapidly aging population, increasing levels of chronic disease, and mounting healthcare costs due to demographic trends throughout the developed world. But we must overcome significant barriers to get to convergence."

Cultivating convergence

Realizing the full potential of the convergence revolution will require much more ambitious and strategic coordination and collaboration across industry, government, and academia, the report argues.

The report accordingly calls for a concerted joint effort by federal agencies, universities, and industry to develop a new strategic roadmap to support convergence-based research. As a concrete next step, the report's authors recommend establishing an interagency working group on convergence with participation from NIH, the National Science Foundation, and other federal agencies involved in funding scientific research, such as the Food and Drug Administration and the Department of Energy.

Other pressing challenges include grant review processes based on narrow, outdated disciplinary structures, which limit the availability of resources for cross-functional research teams. The report also proposes new practices to foster "cultures of convergence" within academic institutions: cross-department hiring and tenure review, convergence "cluster hiring" and career grants, and new PhD programs wherein students design their own degree programs across disciplinary boundaries.

If the potential of convergence is great, so are the stakes.

"Convergence has grown from a little seedling to a sprouting plant, but to become a great tree and orchard yielding fruit for decades into the future, it needs to be nourished, expanded, and cultivated now," says Sharp. "Students need to be educated, collaborations need to be encouraged, and resources need to be committed to make sure convergence thrives."

"This integration is important to deal with the great challenges of the future: continued growth in the accessibility and quality of healthcare, growth of the economy, and providing resources for future populations."

Story Source:

The above post is reprinted from materials provided by Massachusetts Institute of Technology. The original item was written by Jonathan Mingle.Note: Materials may be edited for content and length.

Source: https://www.sciencedaily.com/releases/2016/06/160623145936.htm

/ About us

Founded by Russian entrepreneur Dmitry Itskov in February 2011 with the participation of leading Russian specialists in the field of neural interfaces, robotics, artificial organs and systems.

The main goals of the 2045 Initiative: the creation and realization of a new strategy for the development of humanity which meets global civilization challenges; the creation of optimale conditions promoting the spiritual enlightenment of humanity; and the realization of a new futuristic reality based on 5 principles: high spirituality, high culture, high ethics, high science and high technologies. 

The main science mega-project of the 2045 Initiative aims to create technologies enabling the transfer of a individual’s personality to a more advanced non-biological carrier, and extending life, including to the point of immortality. We devote particular attention to enabling the fullest possible dialogue between the world’s major spiritual traditions, science and society.

A large-scale transformation of humanity, comparable to some of the major spiritual and sci-tech revolutions in history, will require a new strategy. We believe this to be necessary to overcome existing crises, which threaten our planetary habitat and the continued existence of humanity as a species. With the 2045 Initiative, we hope to realize a new strategy for humanity's development, and in so doing, create a more productive, fulfilling, and satisfying future.

The "2045" team is working towards creating an international research center where leading scientists will be engaged in research and development in the fields of anthropomorphic robotics, living systems modeling and brain and consciousness modeling with the goal of transferring one’s individual consciousness to an artificial carrier and achieving cybernetic immortality.

An annual congress "The Global Future 2045" is organized by the Initiative to give platform for discussing mankind's evolutionary strategy based on technologies of cybernetic immortality as well as the possible impact of such technologies on global society, politics and economies of the future.


Future prospects of "2045" Initiative for society


The emergence and widespread use of affordable android "avatars" controlled by a "brain-computer" interface. Coupled with related technologies “avatars’ will give people a number of new features: ability to work in dangerous environments, perform rescue operations, travel in extreme situations etc.
Avatar components will be used in medicine for the rehabilitation of fully or partially disabled patients giving them prosthetic limbs or recover lost senses.


Creation of an autonomous life-support system for the human brain linked to a robot, ‘avatar’, will save people whose body is completely worn out or irreversibly damaged. Any patient with an intact brain will be able to return to a fully functioning  bodily life. Such technologies will  greatly enlarge  the possibility of hybrid bio-electronic devices, thus creating a new IT revolution and will make  all  kinds of superimpositions of electronic and biological systems possible.


Creation of a computer model of the brain and human consciousness  with the subsequent development of means to transfer individual consciousness  onto an artificial carrier. This development will profoundly change the world, it will not only give everyone the possibility of  cybernetic immortality but will also create a friendly artificial intelligence,  expand human capabilities  and provide opportunities for ordinary people to restore or modify their own brain multiple times.  The final result  at this stage can be a real revolution in the understanding of human nature that will completely change the human and technical prospects for humanity.


This is the time when substance-independent minds will receive new bodies with capacities far exceeding those of ordinary humans. A new era for humanity will arrive!  Changes will occur in all spheres of human activity – energy generation, transportation, politics, medicine, psychology, sciences, and so on.

Today it is hard to imagine a future when bodies consisting of nanorobots  will become affordable  and capable of taking any form. It is also hard to imagine body holograms featuring controlled matter. One thing is clear however:  humanity, for the first time in its history, will make a fully managed evolutionary transition and eventually become a new species. Moreover,  prerequisites for a large-scale  expansion into outer space will be created as well.


Key elements of the project in the future

• International social movement
• social network immortal.me
• charitable foundation "Global Future 2045" (Foundation 2045)
• scientific research centre "Immortality"
• business incubator
• University of "Immortality"
• annual award for contribution to the realization of  the project of "Immortality”.

Login as user:

If you are registered on one of these websites, you can get a quick registration. To do this, please select the wesite and follow the instructions.

Login to 2045.com

You do not have login to 2045.com? Register!
Dear colleagues, partners, friends! If you support ​the 2045 strategic social initiative goals and values, please register on our website.

Quick registration:

If you are registered on one of these websites, you can get a quick registration. To do this, please select the wesite and follow the instructions.


Field of activity:
Enter the code shown:

Show another picture

Восстановить пароль


Contact Email:
Attachment ( not greater than 5 Mb. ):
avatar project milestones