/ News
Robotic Fabricator Could Change the Way Buildings Are Constructed
A construction robot has to be powerful enough to handle heavy material, small enough to enter standard buildings, and flexible enough to navigate the terrain.
Back in the 1970s, robots revolutionized the automotive industry, performing a wide range of task more reliably and quickly than humans. More recently, a new generation of more gentle robots has begun to crop up on production lines in other industries. These machines are capable of more delicate, fiddly tasks like packing lettuce. This powerful new workforce is set to revolutionize manufacturing in ways that are, as yet, hard to imagine.
But the building industry is trickier than many others. Construction sites are complex environments that are constantly changing. Any robot would have to be powerful enough to handle heavy material but light and small enough to enter standard buildings and flexible enough to navigate the terrain.
That’s a big ask, but the potential benefits are huge. Construction robots would allow new types of complex structures to be assembled in situ rather than in distant factories and then transported to the site. That allows new types of structures to be built in place, indeed these structures could be modified in real time to allow for any unexpected changes in the environment.
So what is the state-of-the-art for construction robots?
Today we get an answer thanks to the work of Markus Giftthaler at the ETH Zurich in Switzerland and a few pals who have developed a new class of robot capable of creating novel structures on a construction site. They call their new robot the In Situ Fabricator1 and today show what it is capable of.
The In Situ Fabricator1 is designed from the bottom up to be practical. It can build stuff using a range of tools with a precision of less than five millimeters, it is designed to operate semi-autonomously in a complex changing environment, it can reach the height of a standard wall, and it can fit through ordinary doorways. And it is dust- and waterproof, runs off standard electricity, and has battery backup. On top of all this, it must be Internet-connected so that an architect can make real-time changes to any plans if necessary.
Those are a tricky set of targets but ones that the In Situ Fabricator1 largely meets. It has a set of cameras to sense its environment and powerful onboard processors for navigating and planning tasks. It also has a flexible, powerful robotic arm to position construction tools.
To show off its capabilities, Giftthaler and co have used it to build a pair of structures in an experimental construction site in Switzerland called NEST (Next Evolution is Sustainable building Technologies). The first is a double-leaf undulating brick wall that is 6.5 meters long and two meters high and made of 1,600 bricks.
Even positioning such a wall correctly on a construction site is a tricky task. In Situ Fabricator1 does this by comparing the map of the construction site it has gathered from its sensors with the architect’s plans. But even then, it must have the flexibility to allow for unforeseen problems such as uneven terrain or material sagging that changes a structure’s shape.
“To fully exploit the design-related potentials of using such a robot for fabrication, it is essential to make use not only of the manipulation skills of this robot, but to also use the possibility to feed back its sensing data into the design environment,” say Giftthaler and co.
The resulting wall, in which all the bricks are positioned to within seven millimeters, is an impressive structure.
The second task was to weld wires together to form a complex, curved steel mesh that can be filled with concrete. Once again, In Situ Fabricator1’s flexibility proved crucial. One problem with welding is that the process creates tensions that can change the overall shape of the structure in unpredictable ways. So at each stage in the construction, the robot must assess the structure and allow for any shape changes as it welds the next set of wires together. Once again, the results at NEST are impressive.
In Situ Fabricator1 is not perfect, of course. As a proof-of-principle device, Giftthaler and co use it to identify improvements they can make to the next generation of construction robot. One of these is that at almost 1.5 metric tons, In Situ Fabricator1 is too heavy to enter many standard buildings—500 kilograms is the goal for future machines.
But perhaps the most significant problem is a practical limit on the strength and flexibility of robotic arms. In Situ Fabricator1 is capable of manipulating objects up to about 40 kilograms but ideally ought to be able to handle objects as heavy as 60 kilograms.
But that pushes it up against a practical limit. In Situ Fabricator1’s arm is controlled by electric motors that are incapable of handling heavier objects with the same level of precision. What’s more, electric motors are notoriously unreliable in the conditions found on construction sites, which is why most heavy machinery on these sites is hydraulic.
So Giftthaler and co are already at work on a solution. These guys have designed and built a hydraulic actuator that can control a next-generation robot arm while handling heavier objects more reliably and with the same precision. They are already using this design to build the next generation construction robot that they call In Situ Fabricator2, which should be ready by the end of this year.
All that shows significant promise for the building industry. Other groups have tested advances such as 3-D printing new buildings. But a significant limitation of 3-D printing is that the building cannot be bigger than the 3-D printer. So a robot that can construct things that are bigger than itself is a useful advance.
But there is significant work ahead. The building industry is naturally conservative. The relatively long lead time in creating new buildings (not to mention the red tape that goes with it) make it hard for construction companies to invest in this kind of high-tech approach.
But the work of Giftthaler and co should help to overcome this and showcase the ability of robots to create entirely new forms of structure. It’ll be interesting to see if they can do for the construction industry what robots have done, and continue to do, for cars.
Ref: arxiv.org/abs/1701.03573: Mobile Robotic Fabrication at 1:1 scale: the In situ Fabricator
Source: https://www.technologyreview.com/s/603429/robotic-fabricator-could-change-the-way-buildings-are-constructed/
/ About us
Founded by Russian entrepreneur Dmitry Itskov in February 2011 with the participation of leading Russian specialists in the field of neural interfaces, robotics, artificial organs and systems.
The main goals of the 2045 Initiative: the creation and realization of a new strategy for the development of humanity which meets global civilization challenges; the creation of optimale conditions promoting the spiritual enlightenment of humanity; and the realization of a new futuristic reality based on 5 principles: high spirituality, high culture, high ethics, high science and high technologies.
The main science mega-project of the 2045 Initiative aims to create technologies enabling the transfer of a individual’s personality to a more advanced non-biological carrier, and extending life, including to the point of immortality. We devote particular attention to enabling the fullest possible dialogue between the world’s major spiritual traditions, science and society.
A large-scale transformation of humanity, comparable to some of the major spiritual and sci-tech revolutions in history, will require a new strategy. We believe this to be necessary to overcome existing crises, which threaten our planetary habitat and the continued existence of humanity as a species. With the 2045 Initiative, we hope to realize a new strategy for humanity's development, and in so doing, create a more productive, fulfilling, and satisfying future.
The "2045" team is working towards creating an international research center where leading scientists will be engaged in research and development in the fields of anthropomorphic robotics, living systems modeling and brain and consciousness modeling with the goal of transferring one’s individual consciousness to an artificial carrier and achieving cybernetic immortality.
An annual congress "The Global Future 2045" is organized by the Initiative to give platform for discussing mankind's evolutionary strategy based on technologies of cybernetic immortality as well as the possible impact of such technologies on global society, politics and economies of the future.
Future prospects of "2045" Initiative for society
2015-2020
The emergence and widespread use of affordable android "avatars" controlled by a "brain-computer" interface. Coupled with related technologies “avatars’ will give people a number of new features: ability to work in dangerous environments, perform rescue operations, travel in extreme situations etc.
Avatar components will be used in medicine for the rehabilitation of fully or partially disabled patients giving them prosthetic limbs or recover lost senses.
2020-2025
Creation of an autonomous life-support system for the human brain linked to a robot, ‘avatar’, will save people whose body is completely worn out or irreversibly damaged. Any patient with an intact brain will be able to return to a fully functioning bodily life. Such technologies will greatly enlarge the possibility of hybrid bio-electronic devices, thus creating a new IT revolution and will make all kinds of superimpositions of electronic and biological systems possible.
2030-2035
Creation of a computer model of the brain and human consciousness with the subsequent development of means to transfer individual consciousness onto an artificial carrier. This development will profoundly change the world, it will not only give everyone the possibility of cybernetic immortality but will also create a friendly artificial intelligence, expand human capabilities and provide opportunities for ordinary people to restore or modify their own brain multiple times. The final result at this stage can be a real revolution in the understanding of human nature that will completely change the human and technical prospects for humanity.
2045
This is the time when substance-independent minds will receive new bodies with capacities far exceeding those of ordinary humans. A new era for humanity will arrive! Changes will occur in all spheres of human activity – energy generation, transportation, politics, medicine, psychology, sciences, and so on.
Today it is hard to imagine a future when bodies consisting of nanorobots will become affordable and capable of taking any form. It is also hard to imagine body holograms featuring controlled matter. One thing is clear however: humanity, for the first time in its history, will make a fully managed evolutionary transition and eventually become a new species. Moreover, prerequisites for a large-scale expansion into outer space will be created as well.
Key elements of the project in the future
• International social movement
• social network immortal.me
• charitable foundation "Global Future 2045" (Foundation 2045)
• scientific research centre "Immortality"
• business incubator
• University of "Immortality"
• annual award for contribution to the realization of the project of "Immortality”.