/ News


If we want bionic limbs that actually work, we might need smarter amputations

Prosthetic limbs are advancing in leaps and bounds. They’re becoming computerizedbrain-controlled, and sensational. But as futuristic as these bionic limbs are, users often prefer simpler devices because the fancy ones are hard to control and they don’t provide enough feedback.

If you flex your wrist, even if your eyes are closed, you can feel where your wrist is and how fast you’re flexing it. And if you’re holding a barbell, you can feel how heavy it is. Someone with an artificial wrist can’t feel any of that—instead, she has to constantly keep an eye on her prosthetic to see what it’s doing.

“Those sensations are what we intend to provide back to people with limb amputation,” says Hugh Herr, who creates prosthetic limbs at MIT and wears two bionic legs himself.

Herr and his colleagues argue that part of the reason advanced prosthetics aren’t taking off is because amputation essentially hasn’t changed since the Civil War. In a new paper in Science Robotics, they’ve tested a new amputation procedure that may provide better control of advanced prostheses, as well as sensory feedback.

Typical amputations slice right through a patient’s nerves and muscles, leaving some extra muscle to tuck around the end of the limb for cushioning. Without any organs to stimulate, the severed nerves swell painfully. In addition, the arrangement weakens the electrical signals from the muscle, making it difficult to control some bionic limbs that take their orders from the body’s electrical circuitry.

Normally, muscles come in pairs that do opposite things. When you flex your biceps, for example, your triceps stretch. That stretching tricep automatically sends a signal back to your brain, telling you what’s happening in your arm. Amputation typically breaks up these muscle pairings, but Herr thinks that recreating them could make controlling a bionic limb feel more natural, and could give users a sense of their bionic limb’s position and movements without having to look at it. (That sense is called proprioception.)

Muscles normally come in pairs. When one muscle in the pair contracts, the other stretches and sends a signal back to the brain. Researchers think they might be able to use these natural pairings to help amputees "feel" what their artificial limb is doing.

To test out this idea, Herr and his team created artificial muscle pairings in seven rats. Taking two muscles whose nerves had been removed, they linked them together and grafted them into the rats’ legs. Then they took two nerves that normally flex and extend leg muscles, and attached one to each muscle graft. Later, when they stimulated one of the muscles to make it contract, measurements showed that the second muscle automatically sent out a signal to the brain as it stretched. The experiment showed that these artificial muscle pairings work similarly to the biological pairings. Plus, the muscles and nerves provided a strong enough electrical signal that it could potentially be used to control a prosthetic device.

To Herr, these results mean that the artificial muscle pairings might allow information to flow to and from a prosthetic limb. Electrical signals from the contracting muscle could tell the bionic limb what to do, while the stretching muscle tells the brain how the limb is moving, creating a sense of position. Electrical stimulation from the bionic limb to the muscle could provide additional feedback about where the limb is and what it’s feeling. That way, the arm can tell you if someone is shaking your artificial hand or how heavy a barbell in your grip is.

Each muscle pairing can only control one type of motion—for example, moving your forearm up and down for a handshake. Other, independent muscle pairings would be needed to flex each finger, or adjust your wrist.

Study author Hugh Herr hopes to be one of the first humans to try out the new procedure. So far it's only been tested in rats.

Some people with amputations may still have some of these natural muscle pairings in their residual limb. For others, the pairings could be reconstructed by taking muscles from other parts of the body and grafting them to the prosthetic attachment site, like Herr’s team did in this study. And for amputations that are planned in advance, the limb that’s being amputated can be an excellent source of muscles and nerves to help recreate the muscle pairings.

“In the past, the limb was amputated and cremated, and all those great tissues were thrown away,” says Herr. “Even in my case—both my legs are amputated below the knee, and my amputations were done 30-some years ago in a really silly way, in a conventional way—in principle we can do a revision on my limbs and get muscles from another part of my body and create these pairs.”

And in fact, that’s exactly what he plans to do. “We want to rapidly translate this to humans, and I personally want this done on my limbs,” says Herr. Currently he’s having his limbs imaged, developing a surgical plan, and waiting for approval from an ethical review board, but he thinks he could undergo the surgery “very soon.”

“In the past, the limb was amputated and cremated, and all those great tissues were thrown away.”

The procedure is considered low risk since it just involves rearranging tissues. If it doesn’t work, the results should be similar to a conventional amputation.

Another advantage, says Herr, is that the technique provides feedback to the user’s nerves via the muscles. “Muscles don’t mind getting touched by synthetic things, but nerves really complain. It doesn’t like it at all, and ends up rejecting it. Muscles are a lot less touchy.” The FDA has already approved other electrical devices that interface with muscles, so the team will face less of a hurdle there.

If it works, the amputation technique may provide more precise control and sensory feedback, which in turn can lead to better reflexes and a better user experience.

They still need to test it in humans, but the team is hopeful that their technique will help make bionic limbs feel and behave more like natural limbs.

Other researchers, who are putting wires into peoples’ nerves have to figure out what electrical patterns can recreate a sense of force, touch, position, speed. By contrast, says Herr, “we’re using the body’s natural sensors to create these sensations. We’re confident because of that, it’ll feel like position, it’ll feel like speed, it’ll feel like force.”

Source: http://www.popsci.com/bionic-limbs-amputations

/ About us

Founded by Russian entrepreneur Dmitry Itskov in February 2011 with the participation of leading Russian specialists in the field of neural interfaces, robotics, artificial organs and systems.

The main goals of the 2045 Initiative: the creation and realization of a new strategy for the development of humanity which meets global civilization challenges; the creation of optimale conditions promoting the spiritual enlightenment of humanity; and the realization of a new futuristic reality based on 5 principles: high spirituality, high culture, high ethics, high science and high technologies. 

The main science mega-project of the 2045 Initiative aims to create technologies enabling the transfer of a individual’s personality to a more advanced non-biological carrier, and extending life, including to the point of immortality. We devote particular attention to enabling the fullest possible dialogue between the world’s major spiritual traditions, science and society.

A large-scale transformation of humanity, comparable to some of the major spiritual and sci-tech revolutions in history, will require a new strategy. We believe this to be necessary to overcome existing crises, which threaten our planetary habitat and the continued existence of humanity as a species. With the 2045 Initiative, we hope to realize a new strategy for humanity's development, and in so doing, create a more productive, fulfilling, and satisfying future.

The "2045" team is working towards creating an international research center where leading scientists will be engaged in research and development in the fields of anthropomorphic robotics, living systems modeling and brain and consciousness modeling with the goal of transferring one’s individual consciousness to an artificial carrier and achieving cybernetic immortality.

An annual congress "The Global Future 2045" is organized by the Initiative to give platform for discussing mankind's evolutionary strategy based on technologies of cybernetic immortality as well as the possible impact of such technologies on global society, politics and economies of the future.


Future prospects of "2045" Initiative for society


The emergence and widespread use of affordable android "avatars" controlled by a "brain-computer" interface. Coupled with related technologies “avatars’ will give people a number of new features: ability to work in dangerous environments, perform rescue operations, travel in extreme situations etc.
Avatar components will be used in medicine for the rehabilitation of fully or partially disabled patients giving them prosthetic limbs or recover lost senses.


Creation of an autonomous life-support system for the human brain linked to a robot, ‘avatar’, will save people whose body is completely worn out or irreversibly damaged. Any patient with an intact brain will be able to return to a fully functioning  bodily life. Such technologies will  greatly enlarge  the possibility of hybrid bio-electronic devices, thus creating a new IT revolution and will make  all  kinds of superimpositions of electronic and biological systems possible.


Creation of a computer model of the brain and human consciousness  with the subsequent development of means to transfer individual consciousness  onto an artificial carrier. This development will profoundly change the world, it will not only give everyone the possibility of  cybernetic immortality but will also create a friendly artificial intelligence,  expand human capabilities  and provide opportunities for ordinary people to restore or modify their own brain multiple times.  The final result  at this stage can be a real revolution in the understanding of human nature that will completely change the human and technical prospects for humanity.


This is the time when substance-independent minds will receive new bodies with capacities far exceeding those of ordinary humans. A new era for humanity will arrive!  Changes will occur in all spheres of human activity – energy generation, transportation, politics, medicine, psychology, sciences, and so on.

Today it is hard to imagine a future when bodies consisting of nanorobots  will become affordable  and capable of taking any form. It is also hard to imagine body holograms featuring controlled matter. One thing is clear however:  humanity, for the first time in its history, will make a fully managed evolutionary transition and eventually become a new species. Moreover,  prerequisites for a large-scale  expansion into outer space will be created as well.


Key elements of the project in the future

• International social movement
• social network immortal.me
• charitable foundation "Global Future 2045" (Foundation 2045)
• scientific research centre "Immortality"
• business incubator
• University of "Immortality"
• annual award for contribution to the realization of  the project of "Immortality”.

Login as user:

If you are registered on one of these websites, you can get a quick registration. To do this, please select the wesite and follow the instructions.

Login to 2045.com

You do not have login to 2045.com? Register!
Dear colleagues, partners, friends! If you support ​the 2045 strategic social initiative goals and values, please register on our website.

Quick registration:

If you are registered on one of these websites, you can get a quick registration. To do this, please select the wesite and follow the instructions.


Field of activity:
Enter the code shown:

Show another picture

Восстановить пароль


Contact Email:
Attachment ( not greater than 5 Mb. ):
avatar project milestones